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Impulsive-Antisocial Dimension of Psychopathy
Linked to Enlargement and Abnormal Functional
Connectivity of the Striatum
Cole Korponay, Maia Pujara, Philip Deming, Carissa Philippi, Jean Decety, David S. Kosson,
Kent A. Kiehl, and Michael Koenigs
ABSTRACT
BACKGROUND: Psychopathy is a mental health disorder characterized by callous and impulsive antisocial
behavior, and it is associated with a high incidence of violent crime, substance abuse, and recidivism. Recent
studies suggest that the striatum may be a key component of the neurobiological basis for the disorder, although
structural findings have been mixed, and functional connectivity of the striatum in psychopathy has yet to be fully
examined.
METHODS: We performed a multimodal neuroimaging study of striatum volume and functional connectivity in
psychopathy using a large sample of adult male prison inmates (N 5 124). We conducted volumetric analyses in
striatal subnuclei and subsequently assessed resting-state functional connectivity in areas where volume was related
to psychopathy severity.
RESULTS: Total Psychopathy Checklist–Revised and factor 2 scores (which index the impulsive-antisocial traits of
psychopathy) were associated with larger striatal subnuclei volumes and increased volume in focal areas throughout
the striatum, particularly in the nucleus accumbens and putamen bilaterally. Furthermore, at many of the striatal
areas where volume was positively associated with factor 2 scores, psychopathy severity was also associated with
abnormal functional connectivity with other brain regions, including dorsolateral prefrontal cortex, ventral midbrain,
and other areas of the striatum. The results were not attributable to age, race, IQ, substance use history, or
intracranial volume.
CONCLUSIONS: These findings associate the impulsive-antisocial dimension of psychopathy with enlarged striatal
subnuclei and aberrant functional connectivity between the striatum and other brain regions. Furthermore, the
colocalization of volumetric and functional connectivity findings suggests that these neural abnormalities may be
pathophysiologically linked.
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Psychopathy is a mental health disorder characterized by
callous and impulsive antisocial behavior. Present in roughly a
quarter of adult prison inmates, psychopathy is associated with
a disproportionately high incidence of violent crime, substance
abuse, and recidivism (1,2). Identifying the psychological and
neurobiological mechanisms underlying this disorder could thus
have profound implications for the clinical and legal manage-
ment of psychopathic criminals, as well as for the basic
understanding of human social behavior. Based on the person-
ality and behavioral characteristics of the disorder, such as
impulsivity and deficits in passive avoidance (3), reversal
learning (4), and perseverative responding to reward (5), it has
long been postulated that psychopathy may be linked to
abnormalities in processing reward and punishment (3,6–9).
Over several decades, a host of behavioral and psychophysio-
logical studies has offered support for this theory (3,4,10,11).
More recently, brain imaging has been used to address this
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hypothesis at the neural systems level. A number of these
studies have focused on the ventral striatum, a subcortical
target of mesolimbic dopamine neurons that responds to
rewarding or pleasurable stimuli, as well as to abstract stimuli
predicting their occurrence (3,12,13). While functional imaging
studies in community samples have associated impulsive-
antisocial psychopathic traits with heightened ventral striatum
activity during the anticipation of monetary gain (14,15), struc-
tural imaging studies have offered more mixed results. Some
studies have associated psychopathy with increased ventral
striatum volumes (16,17), others have reported decreased
ventral striatum volumes (18), and others have found volume
increases (19) and decreases (20) in more dorsal and lateral
regions of the striatum. The mixed findings among volumetric
studies may be attributable to differences in subject popula-
tions (e.g., prison inmates vs. community samples), psychop-
athy severity, sample sizes, and substance use history.
ical Psychiatry. Published by Elsevier Inc. All rights reserved. 149
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In the present study, we used a unique mobile scanner to
collect multimodal magnetic resonance imaging (MRI) from a
large (N 5 124) sample of adult male prison inmates with a
broad range of psychopathy severity to determine whether
volumes of striatal subregions were linked to assessments of
overall psychopathy severity as well as to assessments of
distinct components of psychopathic traits (factor 1: affective
and interpersonal traits; factor 2: antisocial and lifestyle traits).
Furthermore, we analyzed resting-state functional MRI (fMRI)
data from the same participants to determine whether the
observed striatal structural abnormalities were accompanied
by alterations in striatal functional connectivity. This combina-
tion of analyses comprises the most comprehensive study of
striatum structure and functional connectivity in psychopathy
to date.
METHODS AND MATERIALS

Participants

Adult male inmates (N 5 124), recruited from a medium-
security Wisconsin correctional facility, participated in the
present study. Informed consent was obtained both orally
and in writing. Participants were selected based on the
following inclusion criteria: 1) younger than 45 years; 2) IQ
greater than 70; 3) no history of psychosis or bipolar disorder;
4) no history of significant head injury or postconcussion
symptoms; 5) no current use of psychotropic medications,
and 6) completed interview assessments for psychopathy and
substance use disorder (see below). Of these 124 subjects,
resting-state functional connectivity (RSFC) data were
obtained for 115 subjects; 8 of the subjects were excluded
due to excessive motion in the scanner, leaving a total of 107
subjects for RSFC analysis.

Psychopathy was assessed with the Psychopathy Check-
list–Revised (PCL-R) by trained research assistants (2). The
Table 1. Participant Characteristics

All (N 5 124) Nonpsychopathic (n 5 35)

Mean SD Mean SD

Age, Years 31.6 7.3 31.3 7.9

IQ 98.1 11.5 97.3 12.0

Total PCL-R Score 24.8 7.1 15.3 3.4

Factor 1 Score 9.2 3.3 5.5 2.1

Factor 2 Score 13.6 3.9 8.6 2.8

% n % n

SUD: Abuse 24.2 30 22.9 8

SUD: Dependence 55.6 69 40 14

Race

Caucasian 56.6 70 60 21

African American 41.1 51 34.3 12

Hispanic 1.6 2 2.9 1

Native American 0.8 1 2.9 1

Participant demographic and neuropsychological information is presen
.20 and ,30), and psychopathic (PCL-R $30) inmates.

NA, not applicable; PCL-R, Psychopathy Checklist–Revised; SUD, subs
aReported for two-sample t tests (for age, IQ, and psychopathy sc

(for substance abuse and dependence) comparing psychopathic and nonp

150 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
PCL-R is a 20-item scale completed based on a semistruc-
tured interview and file review. Each item was scored as 0, 1,
or 2 based on the severity of each trait. Total scores $30 (n 5

41) indicate psychopathy; scores .20 and ,30 (n 5 48) are
considered intermediate, and scores #20 (n 5 35) are non-
psychopathic (2). Interrater reliability (intraclass correlation) for
total PCL-R score was 0.98 based on 10 dual ratings. Total
PCL-R, factor 1 (interpersonal/affective traits), and factor 2
(lifestyle/antisocial traits) scores were used for separate
regression analyses (21).

Substance use disorder was assessed with the Structured
Clinical Interview for DSM-IV Axis I disorders (22). This
measure classifies whether a subject meets criteria for lifetime
history of substance abuse or substance dependence for each
of the following substances: alcohol, cannabis, cocaine,
opioids, stimulants, sedatives, and hallucinogens. Participant
characteristics are summarized in Table 1.
MRI Acquisition

MRI data were acquired using the Mind Research Network’s
Siemens 1.5T Avanto Mobile MRI System equipped with a 12-
element head coil. All participants underwent scanning on
correctional facility grounds. A high-resolution T1-weighted
structural image was acquired for each subject using a four-
echo magnetization-prepared rapid gradient-echo sequence
(repetition time 5 2530 ms; echo time 5 1.64, 3.5, 5.36, and
7.22 ms; flip angle 5 71; field of view 5 256 3 256 mm2;
matrix 5 128 3 128; slice thickness 5 1.33 mm; no gap; voxel
size 5 1 3 1 3 1.33 mm3; 128 interleaved sagittal slices). All
four echoes were averaged into a single high-resolution image
(23). Resting-state functional images (T2*-weighted gradient-
echo functional echo planar images [EPIs]) were collected
while subjects lay still and awake, passively viewing a fixation
cross for 5.5 minuntes (158 volumes) (24) and were acquired
with the following parameters: repetition time 5 2000 ms;
Intermediate (n 5 48) Psychopathic (n 5 41)

paMean SD Mean SD

31.8 6.7 31.5 7.7 .93

95.3 11.6 101.5 10.3 .19

25.6 2.3 32.1 1.6 ,.001

9.3 2.3 12.3 1.8 ,.001

14.3 1.9 17 1.5 ,.001

% n % n

25 12 24.4 10 .88

56 27 68.3 28 .01

45.8 22 65.6 27 .52

52.1 25 34.1 14 .52

2.1 1 0 0 NA

0 0 0 0 NA

ted by group for nonpsychopathic (PCL-R #20), intermediate (PCL-R

tance use disorder.
ores), Fisher's exact test (for race), and Pearson chi-squared test
sychopathic inmates.
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Figure 1. Striatal subnuclei seg-
mentation in FreeSurfer 5.3 (left) and
in SPM12 as defined by Individual
Brain Atlases using Statistical Para-
metric Mapping 71 (right).
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echo time 5 39 ms; flip angle 5 751; field of view 5 24 3 24
cm; matrix 5 64 3 64; slice thickness 5 4 mm; gap 5 1 mm;
voxel size 5 3.75 3 3.75 3 5 mm; 27 sequential axial oblique
slices. Preprocessing and analyses of structural MRI data were
conducted in both FreeSurfer 5.3 (25) in Linux and Statistical
Parametric Mapping software (SPM12; http://www.fil.ion.ucl.
ac.uk/spm). fMRI data analysis was performed using AFNI (26)
and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

Structural MRI Preprocessing: FreeSurfer

FreeSurfer’s automated preprocessing procedure includes
skull-stripping, registration, intensity normalization, Talairach
transformation, tissue segmentation, and surface tessellation
(27). FreeSurfer provides volume measurements for eight
striatal subregions (left and right putamen, left and right
caudate, left and right globus pallidus, and left and right
nucleus accumbens) (Figure 1).
Structural MRI Preprocessing: SPM

T1 images were manually realigned; segmented into gray
matter, white matter, and cerebrospinal fluid; normalized to
Montreal Neurological Institute (MNI)-152 space; modulated to
preserve volume after normalization; and smoothed with an 8-
mm full-width at half-maximum Gaussian kernel (28). Individual
Brain Atlases using Statistical Parametric Mapping 71 (http://
www.thomaskoenig.ch/Lester/ibaspm.htm) in the Wake Forest
University PickAtlas Toolbox was used to create masks of the
eight striatal subregion regions of interest (ROIs) (Figure 1).

fMRI Preprocessing

The following preprocessing steps were performed: 1) EPI
volumes were slice time corrected, 2) motion was corrected by
rigid body alignment, 3) deobliqued, 4) the first three volumes were
omitted, 5) data were then motion corrected (3dvolreg in AFNI), 6)
despiked to remove extreme time series outliers, and then 7)
bandpass filtered (0.009, f, 0.08) and spatially smoothed with a
6-mm full width at half maximum Gaussian kernel (29). The skull-
stripped anatomical scan for each participant was rigidly coregis-
tered with the EPI and diffeomorphically aligned to MNI-152 space
(30). The transformation matrix from this registration was then
used to align the EPI scans to MNI-152 space. Finally, the EPI
scans were resampled to 3-mm cubic voxels for subsequent
functional connectivity analyses.

Because individual differences in subject motion can con-
tribute to resting-state correlations (31–33), we excluded
Biological Psychiatry: Cognitive Neuroscience and Ne
subjects with mean framewise motion displacement (i.e.,
volume-to-volume movement across the time series) .2 mm
and/or total scan time ,4 minutes after censoring all time
points with framewise motion displacement .0.2 mm and
extreme time series displacement (i.e., time points in which
10% of voxels were outliers) (31–33). Eight participants were
excluded for excessive motion, leaving a final sample of 107
participants.

Analytic Strategy

Because results from studies of structural brain morphometry
may vary as a function of analysis package (34), we used two
separate software programs to measure the volumes of striatal
subregions: FreeSurfer and SPM. Both programs yield regional
volume totals for the ROIs of this study: putamen, caudate,
globus pallidus, and nucleus accumbens (see Supplemental
Table S1 for correlations between FreeSurfer and SPM for the
average volume of each subregion). In addition, SPM was
used to perform small volume-corrected voxelwise analyses
within ROIs, because both this type of analysis can detect
focal relationships that may be missed in the regional volume
analysis and this analysis allows for more specific localization
of the areas where volume is most strongly linked to psy-
chopathy severity.

We then examined whether the identified areas where
volume correlated with psychopathy severity (in terms of
total PCL-R, factor 1, or factor 2 scores) also had RSFC
relationships to other brain regions that correlated with
psychopathy severity. To do this, we created spherical seeds
with a 3-mm radius around the peak coordinates of each focal
cluster, identified via the within-ROI voxelwise analysis, where
volume was related to psychopathy severity and subsequently
assessed RSFC between these areas and other areas of the
brain in relationship to psychopathy ratings. Seeds were
evaluated in RSFC regressions only in relationship to the
specific psychopathy score type (total PCL-R, factor 1, and/or
factor 2) for which the seed had demonstrated a relationship
within the volumetric analysis.

RSFC Analysis

RSFC was assessed for each seed ROI using the mean
resting-state blood oxygen level–dependent time series,
extracted for each participant. The mean time series from
each ROI was included in a general linear model with 15
regressors of no interest: 1–12) six motion parameters (three
translations and three rotations) obtained from the rigid-body
alignment of EPI volumes and their six derivatives; 13) the
uroimaging March 2017; 2:149–157 www.sobp.org/BPCNNI 151
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Figure 2. Zero-order correlation plots for significant relationships between PCL-R scores (total, factor 2) and striatal subnuclei. L, left; PCL-R, Psychopathy
Checklist–Revised; R, right; SPM, Statistical Parametric Mapping.
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white matter time series; 14) the cerebrospinal fluid time
series; and 15) a second-order polynomial to model baseline
signal and slow drift. To further control for subject motion,
volumes were censored for extreme time series displacement
(i.e., time points in which 10% of voxels were outliers) and
framewise motion displacement (i.e., volume-to-volume move-
ment) .0.2 mm (31,33). The output of R2 values from the
general linear model was converted to correlation coefficients
(r), which were then converted to z scores via Fisher’s r-to-z
transform and corrected for degrees of freedom. The resulting
z score maps were entered into second-level statistical
analyses (24).

We performed linear regression analyses (3dRegAna in
AFNI) to examine the relationship between psychopathy
scores and RSFC for all seed ROIs. We performed separate
regressions for total PCL-R, factor 1 (covarying for factor 2),
and factor 2 (covarying for factor 1). To correct for multiple
comparisons, we used familywise error correction at the
cluster level using a whole-brain mask (3dClustSim in AFNI)
(35,36) and applied cluster extent thresholding. The cluster
extent threshold corresponded to the statistical probability
(α = .05, or 5% chance) of identifying a random noise cluster at
152 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
a predefined voxelwise (i.e., whole-brain) threshold of p = .01
(uncorrected). Using this whole-brain familywise error cluster
correction, a cluster-corrected size of $106 voxels was
significant at pFWE , .05 in the regression analyses reported
below for PCL-R scores.
Covariates

Total PCL-R scores and factor 2 scores were significantly
correlated with substance use disorder (r = .338, p , .001 and
r = .392, p . .001, respectively). Because gray matter volume
has been shown to relate to substance use (37–41), we
included presence of substance use disorder (none, abuse,
or dependence), using the diagnoses from the Structured
Clinical Interview for DSM-IV Axis I disorders, as a covariate
in all volumetric regression models. Furthermore, we observed
a significant group effect (p , .05) of race (between Caucasian
and non-Caucasian subjects) on volume of many of the striatal
ROIs; thus, race was included as a covariate in all volumetric
regression models. In addition, we included age and intra-
cranial volume as covariates in all volumetric regression
models because these factors have also been shown to have
arch 2017; 2:149–157 www.sobp.org/BPCNNI
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independent relationships with gray matter volume (42,43). IQ
was not related to psychopathy severity or striatal volumes,
and so it was not included as a covariate. In both volumetric
and RSFC regressions where the main variable of interest was
a factor score, the other factor score was included as a
covariate. There was no significant relationship between
PCL-R score and intracranial volume as measured by either
SPM (p = .499) or FreeSurfer (p = .343). In addition to
regression analyses, we calculated zero-order (bivariate) cor-
relations between PCL-R factor scores and structural vol-
umes. The pattern of findings for these correlations was
identical to that for the regressions unless otherwise noted.

RESULTS

Striatal Subnuclei Volumes

Total PCL-R scores were positively related to the accumbens
volumes in both FreeSurfer and SPM (Figure 2). Factor 2 scores
were positively related to volume in the right putamen in both
FreeSurfer and SPM; in accumbens bilaterally, right globus
pallidus, and right caudate in SPM; and in left putamen in
FreeSurfer. These findings were significant in the full regression
model and zero-order correlations. In contrast, factor 1 scores
were negatively related to right putamen volume, although this
relationship was not significant as a zero-order correlation and
was only present in SPM. See Supplemental Tables S2–S4 and
Supplemental Results for complete results.

Voxelwise Volume Analysis

Voxelwise regressions revealed a number of focal regions in the
striatum in which volume increases with increasing psychopathy
severity (Figure 3). Total PCL-R scores were positively related to
focal volume clusters in the accumbens bilaterally, in the globus
pallidus bilaterally, and in the left putamen; factor 1 scores were
positively related to a focal volume cluster in the right putamen;
and factor 2 scores were positively related to focal volume clusters
in the left caudate, the accumbens bilaterally, the right globus
pallidus, and the putamen bilaterally. Finally, despite our finding of
negative relationships between factor 1 score and regional volume
of the right putamen, there were no focal volume clusters
negatively related to psychopathy scores. See Supplemental
Tables S5–S7 for full results.

RSFC

Total PCL-R scores were inversely related to RSFC between the
left putamen and right superior lateral occipital cortex and also
between the right globus pallidus and right occipital cortex
(Figure 4). Factor 1 scores were not related to RSFC for any
seeds. Factor 2 scores were positively related to RSFC between
striatal seeds and the ventral midbrain, dorsolateral prefrontal
cortex, and other areas of the striatum. Factor 2 scores were
inversely related to RSFC between striatal seeds and the pre-
central gyrus, postcentral gyrus, and lateral occipital cortex
(Figure 4). See Supplemental Tables S8 and S9 for full results.

DISCUSSION

This study used a multimodal neuroimaging approach to
investigate the neural underpinnings of psychopathy in the
Biological Psychiatry: Cognitive Neuroscience and Ne
striatum. First, we investigated how volumes of striatal sub-
nuclei relate to psychopathy severity as measured by total
PCL-R, factor 1, and factor 2 scores. In general, we found that
psychopathy severity was linked to larger striatal subnuclei
volumes, most robustly in the accumbens and putamen, and
that this enlargement was more strongly linked to factor 2
scores than factor 1 scores.

Next, we performed voxelwise analyses to identify the focal
areas within the striatum where volume was most strongly
related to psychopathy severity. These results aligned with
those of the regional volume analyses, because volume in
focal areas throughout the striatum, including the nucleus
accumbens and putamen, were positively associated with
psychopathy severity, driven predominantly by factor 2
scores.

We then performed RSFC analyses to examine whether
areas of the striatum for which structural analyses had
revealed abnormal volumes associated with psychopathy also
displayed functional connectivity abnormalities. Indeed, we
found that at many of these striatal areas, psychopathy
severity was also associated with abnormal RSFC to other
areas of the brain. Psychopathy severity was positively
associated with RSFC between striatal areas and other areas
of the striatum, dorsolateral prefrontal cortex, and ventral
midbrain; conversely, psychopathy severity was inversely
related to RSFC between striatal areas and areas within the
parietal and occipital lobes. As in the structural analyses,
factor 2 scores predominantly drove the RSFC findings.

Overall, these findings help to clarify the structural and
functional features of the striatum in psychopathy. Our results
are consistent with studies finding volume increases of the
striatum in psychopathy (16,17) and also provide a detailed
analysis of how these structural abnormalities may correspond
to abnormalities in functional connectivity.

Of particular note is the strong relationship observed here
between factor 2 scores and striatal neurobiology. Because
the factor 2 dimension of psychopathy is characterized in part
by impulsive behavior (2,21) and excessive need for stimula-
tion, our finding that striatal neurobiology related most
strongly to factor 2 is consistent with a large amount of
literature implicating abnormality of the striatum in deficits in
reward-processing and impulse control (44–50). For instance,
we found that factor 2 severity was positively associated with
functional connectivity between the nucleus accumbens and
dorsolateral prefrontal cortex. Evidence suggests that individ-
ual differences in reward-processing and impulse control are
related to the integrity of frontostriatal circuitry (51,52).
A diffusion tensor imaging study found that increased structural
connectivity between the striatum and prefrontal cortex was
associated with greater reward dependence (53). This is
consistent with our finding of a positive relationship between
factor 2 scores and functional connectivity between the striatum
and prefrontal cortex. Relatedly, we observed that factor 2
severity was positively associated with functional connectivity
between the striatum and ventral midbrain. The ventral midbrain
is known to communicate with the striatum via dopaminergic
transmission as part of the reward-processing circuit (13).
Furthermore, we observed three distinct instances of elevated
striatostriatal functional connectivity in relationship to factor 2
severity. Collectively, cortico-striato-midbrain circuitry is thought
uroimaging March 2017; 2:149–157 www.sobp.org/BPCNNI 153
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Figure 3. Focal areas within striatum (shown in red) where volume has a positive relationship with PCL-R scores (total, factor 1, factor 2). PCL-R,
Psychopathy Checklist–Revised.
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to be central to the brain’s reward system (54), and our finding
of abnormal frontostriatal, striato-midbrain, and striatostriatal
functional connectivity in relationship to factor 2 severity
provides evidence for a neural substrate for the deficits in
reward processing observed in psychopathy (51) and may be
related to the heightened mesolimbic dopamine response to
reward associated with impulsive-antisocial psychopathic traits,
as previously demonstrated in a community (nonoffender)
sample (14).

Several striatal subregions also showed inverse relation-
ships between psychopathy severity and functional connec-
tivity with areas of the precentral and postcentral gyri. Imaging
studies in humans have shown cortical thinning in the
precentral gyrus bilaterally in psychopathy (23), as well as
thinning in the sensorimotor cortex more generally, in a
community sample of violent individuals with antisocial per-
sonality disorder (55). Our results suggest that the volumetric
abnormalities observed in these areas in relationship to
psychopathic traits may be related to abnormalities in func-
tional connectivity with the striatum.

Another intriguing observation in this study is the stark
difference in the neural correlates of factor 1 and factor 2
scores. Whereas factor 2 scores were uniformly positively
associated with both regional and focal volumes in the ventral
striatum, factor 1 scores did not have robust or consistent
relationships with striatal subregion volumes. Consideration of
factor 1 findings is important because factor 1 traits are unique
to psychopathy, whereas factor 2 traits may be shared with
other externalizing disorders such as antisocial personality
disorder. In the present study, the only findings related to
factor 1 were somewhat inconsistent (negative association
with putamen in the overall striatal subnuclei volume analysis,
but positive association within putamen in the voxelwise
volume analysis) and were not significant in zero-order
154 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
correlations. By contrast, a previous study found a positive
relationship between overall lenticular nucleus (putamen plus
globus pallidus nuclei) volumes and factor 1 scores (19).
Furthermore, whereas factor 2 scores were associated with
multiple patterns of abnormal striatum functional connectivity,
there were no such correlations with factor 1 scores. These
distinct relationships suggest that factor 1 and factor 2 traits,
despite being highly correlated in terms of PCL-R subscores,
are clearly dissociable at the neural level. This conclusion is
consistent with recent neuroimaging studies examining white
matter microstructure as well as cortical functional connectiv-
ity (24,56,57).

One issue that warrants consideration is the substantial rate
of substance use disorder in this sample, which correlated
significantly with both total PCL-R and factor 2 scores. Multi-
ple studies have linked substance use disorder to structural
and functional abnormalities in the striatum (39,58,59). We
included a substance use variable in our regression models to
account for this feature of the study population. Hence, the
findings we report here do not appear to be due to individual
differences in substance abuse histories. In a future study, we
will more fully examine the relationships between substance
use characteristics and striatum structure and function in this
sample. Another issue worth addressing in future studies is the
relationship between volumetric and RSFC findings. While our
approach to choosing seeds for the RSFC analysis allowed us
to directly assess whether structural and functional abnormal-
ities co-occurred at the same sites, this method may be
considered liable to statistical nonindependence (60), in that
the volume and RSFC of striatal subnuclei may be inherently
linked. Future studies, in both clinical and nonclinical samples,
could establish whether this is indeed the case. Another
consideration to address is the relationship between the
findings of this study and those of previous imaging studies
arch 2017; 2:149–157 www.sobp.org/BPCNNI
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Figure 4. Resting-state functional connectivity results for focal volume clusters within the striatum. Positive relationships between focal clusters and PCL-R
scores (total, factor 1, factor 2) are shown in yellow. Negative relationships are shown in blue. PCL-R, Psychopathy Checklist–Revised.
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of psychopathy from our group. Two volumetric studies from
Ermer et al. (61,62), both in samples entirely distinct from the
sample of the present study, did not report a relationship
between psychopathy and striatal volume in a whole-brain
Biological Psychiatry: Cognitive Neuroscience and Ne
analysis in SPM. However, the striatum was not investigated
via an ROI approach, because the focus of these investiga-
tions was paralimbic regions. Another volumetric study by
Pujara et al. (16), from which there is an overlap of 12 of the
uroimaging March 2017; 2:149–157 www.sobp.org/BPCNNI 155
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124 subjects in the present study, used an extreme group
design (psychopathic vs. nonpsychopathic inmates) with a
relatively small overall sample size (n 5 41) and did not assess
the relationship between psychopathy and striatal volume
across the full, continuous range of severity, nor did it examine
individual factor scores. Furthermore, a prior RSFC study by
Philippi et al. (24), which used the same subjects as the
present study, only examined corticocortical relationships.
Finally, it is important to note the differences in regional
volume results yielded by FreeSurfer and SPM. While
Supplemental Table S1 demonstrates significant correlations
between volumes for most striatal subnuclei, the correlation
values themselves are moderate. Disparities in volume calcu-
lations between the two programs, likely due to differences in
image processing methods and ROI definitions, demonstrate
the importance of evaluating volumetric relationships in multi-
ple software packages in future studies.

In summary, we have analyzed a unique set of multimodal
neuroimaging data from a large sample of incarcerated
criminal offenders to characterize the relationships between
specific striatal subnuclei and distinct clusters of psychopathic
traits. Our findings provide evidence that enlarged striatal
subnuclei and aberrant functional connectivity between the
striatum and other regions of the brain may contribute to the
impulsive-antisocial dimension of psychopathy. Furthermore,
our finding that abnormalities in volume and functional con-
nectivity often co-occurred at the same sites suggests that
these abnormalities may be pathophysiologically linked.
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