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Abstract
Differences between males and females have been extensively documented in biological, psy-

chological, and behavioral domains. Among these, sex differences in the rate and typology of

antisocial behavior remains one of the most conspicuous and enduring patterns among humans.

However, the nature and extent of sexual dimorphism in the brain among antisocial populations

remains mostly unexplored. Here, we seek to understand sex differences in brain structure

between incarcerated males and females in a large sample (n = 1,300) using machine learning.

We apply source-based morphometry, a contemporary multivariate approach for quantifying

gray matter measured with magnetic resonance imaging, and carry these parcellations forward

using machine learning to classify sex. Models using components of brain gray matter volume

and concentration were able to differentiate between males and females with greater than 93%

generalizable accuracy. Highly differentiated components include orbitofrontal and frontopolar

regions, proportionally larger in females, and anterior medial temporal regions proportionally

larger in males. We also provide a complimentary analysis of a nonforensic healthy control sam-

ple and replicate our 93% sex discrimination. These findings demonstrate that the brains of

males and females are highly distinguishable. Understanding sex differences in the brain has

implications for elucidating variability in the incidence and progression of disease, psychopathol-

ogy, and differences in psychological traits and behavior. The reliability of these differences con-

firms the importance of sex as a moderator of individual differences in brain structure and

suggests future research should consider sex specific models.
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1 | INTRODUCTION

Differences between males and females have been extensively docu-

mented in biological, psychological, and behavioral domains including

criminology. These differences have encouraged the examination of

sexual dimorphism and functional specialization in the human brain,

which has remained a prominent branch of psychology and neurosci-

ence research for well over a century (Broca, 1861; Lee & Pearson,

1901). Enduring controversy surrounds this topic as, historically, some

have used the identification of organic differences among groups as a

platform for reinforcing stereotypes and inferring a basis for funda-

mental limitations in ability, intelligence, and social status (Bean, 1906;

Lynn, 1994; Russett, 2009). These findings and their interpretations

have been rightfully challenged and debated for decades (Alper, 1985;

Gould, 1996; Lynn, 1994). While developments in neuroimaging tech-

nology and computational methods have added new perspectives to

the debate, they are no less prone to the controversies of neurosexism

(Fine, 2013; Fine, Jordan-Young, Kaiser, & Rippon, 2013). Still, the elu-

cidation of sex differences in the brain remains a highly important

topic as these data help us understand more about the variable inci-

dence and expression of mental health issues, disease, and our socio-

biological and behavioral diversity as a species.

Despite the historically divisive nature of the topic, prevailing evi-

dence at least does not favor a null hypothesis. The existence of
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organic differences in the brain, attributable to sex, has been well-

replicated and reviewed at an aggregate level (Ruigrok et al., 2014;

Sacher, Neumann, Okon-Singer, Gotowiec, & Villringer, 2013). Evi-

dence suggests that men have larger brains than women, both abso-

lutely and after controlling for average differences in body and head

size (Allen, Damasio, Grabowski, Bruss, & Zhang, 2003; Lüders, Stein-

metz, & Jäncke, 2002; Nopoulos, Flaum, O'Leary, & Andreasen, 2000).

Morphologically, men's brains have higher relative proportions of

white matter while women's brains have higher proportions of gray

matter (Allen et al., 2003; Gur et al., 1999). Localized dimorphic

regions are more variable in the literature, but accumulating evidence

suggests that males exhibit proportionally larger volumes in subcorti-

cal and interior cortical regions including the amygdala, hippocampus,

parahippocampal gyrus, posterior cingulate, and temporal poles.

Females, by contrast, exhibit proportionally larger volumes in several

frontal cortical regions including inferior frontal gyrus, middle frontal

gyrus, frontal pole, and frontal operculum (Ruigrok et al., 2014; Sacher

et al., 2013). Advances in the quantification of brain data have the

potential to improve the sensitivity of these measures—for instance,

the parcellation and boundaries of individual anatomical features

often vary across studies, and methods that apply data-driven

approaches for defining these regions may provide additional benefits

(Gupta et al., 2014; Xu, Groth, Pearlson, Schretlen, & Calhoun, 2009).

Recent descriptions have emphasized that despite the presence of

well-replicated average differences in many brain regions between

sexes, there is substantial overlap in the morphology of individual brain

regions. Based on a sample of over 1,400 individuals, Joel and col-

leagues (2015) argued that a lack of internal consistency in dimorphism

on many individual metrics makes male and female brains essentially

indistinguishable at an individual level. Critics, however, responded that

these conclusions rely on univariate logic (Del Giudice et al., 2015,

2016; Rosenblatt, 2016), and others have demonstrated that multivari-

ate classification techniques relying on variation among many brain

regions simultaneously are quite reliable. For example, relying on a sam-

ple of over 1,500 individuals, Chekroud, Ward, Rosenberg, & Holmes

(2016) achieved multivariate classification of sex based on gray matter

with over 90% accuracy (see also Lao et al., 2004).

2 | SEX DIFFERENCES AND ANTISOCIAL
BEHAVIOR

Sex differences in the brain also covary with many observable differ-

ences in behavior. A largely unexplored segment of this research lies

in extending this work to better understand antisocial behavior in

forensic samples. Conspicuous sex differences are apparent in both

the frequency and nature of antisocial behavior (Heidensohn & Silves-

tri, 2012; Moffitt, 2001). Men engage in antisocial behavior more fre-

quently than females (Del Giudice, 2015; Rowe, Vazsonyi, & Flannery,

1995), and these differences are even more pronounced when focus-

ing on aggressive behavior and violent crime (Archer, 2004; Archer &

Coyne, 2005). For example, approximately 75% of those arrested in

the United States are males, and 80% of those arrested for violent

crimes are males (Federal Bureau of Investigation, 2014). A number of

theories examine different influences on these persistent trends from

the perspectives of sociology (Harris, 2000; Steffensmeier & Allan,

1996), psychology (Bettencourt & Miller, 1996; Del Giudice, 2015;

Feder, Levant, & Dean, 2007), and biology (Batrinos, 2012; Ferguson &

Beaver, 2009). Neuroscience may have a unique place among these

perspectives if we consider that, regardless of the variety of anteced-

ents, and their interactions, these influences likely converge in the

brain as it is the organ that governs our behavior most proximally (see

also Jorgensen, Anderson, & Barnes, 2016). For example, Raine, Yang,

Narr, and Toga (2011) reported that reductions in orbitofrontal and

middle frontal gray matter volume accounted for approximately 77%

of the difference in antisocial behavior between males and females.

Furthermore, relationships between brain variables and antisocial

behavior differentiated by sex emerge quite early in development,

with boys and girls showing unique associations between brain mea-

sures and delinquent conduct (Michalska, Decety, Zeffiro, & Lahey,

2015; Michalska, Zeffiro, & Decety, 2016; Raschle et al., 2018;). In

short, sex differences in the brain appear to be important for under-

standing differences in antisocial behavior; however, it has yet to be

demonstrated whether such differences amount to simple average dif-

ferences or more precisely represent complex dimorphism between

sexes in an antisocial sample.

Here, we set out to examine the utility of morphological gray mat-

ter differences for differentiating between male and female incarcer-

ated offenders. We further aim to demonstrate the utility of an

advanced multivariate approach for quantifying gray matter (source-

based morphometry [SBM]) and to apply machine learning algorithms

to these data to examine their separability based on sex. These data

will be influential for understanding the nature of sex differences in

the brain and a step toward further clarifying their role in large-scale

behavioral patterns in our society.

3 | METHODS

3.1 | Participants

Data were collected from adult volunteers incarcerated in prisons in

New Mexico and Wisconsin, and included male and female adult and

juvenile offenders. A total of 1,300 participants (males n = 1,014;

females n = 286) were included in this study. This sample was

restricted to right-handed individuals. Ages ranged from 12 to

66 (M = 31.3, SD = 10.8). IQ ranged from 71 to 140 (M = 95.8, SD =

13.1); volunteers with IQ < 70 were excluded from participation.

Males and females did not differ on age or IQ; see sample characteris-

tics in Table 1. Age and IQ were both used as covariates in prediction

models. To observe best practices in prediction modeling approaches,

this sample was randomly divided into two separate samples: one

designated for training the machine (n = 930), and the other sample

dedicated for testing generalizability of the model (n = 370), see clas-

sification methods below.

These data have been aggregated from participants who have

volunteered for one of several ongoing brain imaging studies taking

place in our collaborating forensic institutions. All research protocols

have been approved by institutional review boards at the Ethical and

Independent Review Services and University of Wisconsin-Madison
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and the Office of Human Research Protections. This research meets

ethical standards for responsible research with human subjects. Vol-

unteers from forensic facilities were recruited via fliers and word of

mouth. Meetings were scheduled with interested participants, and

informed consent was obtained from all adult participants included in

the study. Juvenile participants provided written informed assent in

addition to their parent/guardian's written informed consent. Partici-

pants were informed of their right to terminate participation at any

point, the lack of any direct institutional benefits, and that their partic-

ipation would not affect their facility status or parole status. They

were compensated with an hourly rate commensurate with standard

rate for work assignments at their facility. Participants were screened

for magnetic resonance imaging (MRI) safety, and excluded for any

contraindications (e.g., metal in body). Participants were also excluded

from our studies if they reported a history of major head injury.

3.2 | MRI data acquisition and analysis

High-resolution T1-weighted structural MRI scans were acquired

using the Mind Research Network Mobile Siemens 1.5T Avanto MRI

scanner. This custom unit is specifically designed for transport and

deployment within the secure environments of forensic facilities. A

multi-echo MPRAGE pulse sequence (repetition time = 2,530 ms,

echo times = 1.64, 3.50, 5.36, and 7.22 ms, inversion time = 1,100

ms, flip angle = 7�, slice thickness = 1.3 mm, matrix size = 256 ×

256) was used, yielding 128 sagittal slices with an in-plane resolution

of 1.0 × 1.0 mm2. Data were preprocessed and analyzed using Statis-

tical Parametric Mapping software (SPM12; http://www.fil.ion.ucl.ac.

uk/spm). T1 images were manually inspected by an operator blind to

subject identity and realigned to ensure proper spatial normalization.

Images were then analyzed via the unified segmentation approach as

implemented in SPM12 (Ashburner & Friston, 2005). Unified segmen-

tation allows for image registration based on Gaussian mixture model-

ing, tissue classification with warped prior probability maps and bias

correction to be combined in the same generative model. Both volume

(modulated data) and density (unmodulated data) were extracted for

analyses. A Jacobian modulation was performed to preserve total vol-

ume (Ashburner & Friston, 2000, 2005). A nonlinear transformation

without Jacobian determinants was performed on unmodulated

images to extract gray matter density (Ashburner & Friston, 2000,

2005). Modulated and unmodulated images were resampled to

2 × 2 × 2 mm3 and smoothed with a 10 mm full-width at half-

maximum Gaussian kernel. Voxels with gray matter value of <0.15

were excluded in order to remove possible edge effects between gray

matter and white matter. Only gray matter segments were used in this

analysis.

SBM was used to separate gray matter volume and density into

maximally independent source networks. SBM is a multivariate

alternative to voxel-based morphometry (VBM). It is an application of

independent component analysis (ICA) for structural brain data

(Calhoun & Adali, 2006; Xu et al., 2009). In contrast to VBM, SBM

uses relationships among voxels, identifying distinct regions with com-

mon covariation between subjects. These source networks are spa-

tially distinct and maximally independent (see also Caprihan et al.,

2011; Nakai et al., 2004). SBM was carried out using spatial ICA as

implemented in the GIFT Toolbox (Calhoun, Liu, & Adali, 2009)

(http://mialab.mrn.org/software/gift). The number of source networks

for modulated and unmodulated gray matter was set at 30 each,

which has been demonstrated to produce a stable set of structural

networks (Turner et al., 2012; Xu et al., 2009). Final component selec-

tion included the removal of spatial maps that were identified as noise

or motion related. One modulated and two unmodulated components

were removed, yielding 57 independent components used in the final

analysis. Loading coefficients for each source network for each indi-

vidual are carried forward as features in the classification models

described in the following.

3.3 | Machine learning classification

Loading coefficients for modulated and unmodulated gray matter

from SBM analysis were used together with age and IQ estimates to

test their utility in classifying sex (as categorically male or female). A

large number of data classification approaches are available, each with

certain advantages. While the mathematical approaches differ, these

machine learning methods serve essentially the same purpose: to use

a set of known information to build a generalizable model capable of

predicting unknown information from a set of cases with limited data.

In order to test the utility of a given type of information (for our pur-

poses, localized gray matter volumes and density) for differentiating

among groups/classes (sex), we provide full information on a set of

cases for deriving the initial model, then test the performance (gener-

alizability) of that model on cases for which limited data are provided,

but for which the true value of a predicted outcome is known, such

that errors in classification can be detected (i.e., supervised learning).

In order to examine classification performance under best practices

for reproducibility (Friedman, Hastie, & Tibshirani, 2001; Vapnik,

1998), we first separated our data into a training sample (n = 930) and

a testing sample (n = 370), based on random computer-aided assign-

ment. Individuals in the testing sample were not included in model

development to avoid potential bias. Their data were solely used for

the purpose of validating the generalizability of the classification per-

formance of models developed on the training set.

To compare among a number of methods, we used a publicly avail-

able toolbox which runs multiple classification approaches simultaneously

to explore their relative performance. The Polyssifier toolbox (https://

github.com/alvarouc/polyssifier) compares a k-nearest neighbors, linear

TABLE 1 Sample characteristics

Full sample (N = 1,300) Males only (n = 1,014) Females only (n = 286) t-Value p-Value

Age 31.3, 10.8 31.1, 11.1 32.0, 9.8 1.35 .178

IQ 95.8, 13.1 96.1, 13.7 95.0, 10.7 1.34 .181

Note. Sample contains right-handed individuals only; t and p values correspond to comparisons demonstrating no significant differences between males
and females in age and IQ.
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support vector machine, radial basis function (RBF) support vector

machine (SVM), decision tree, random forest, logistic regression, naïve

Bayes, and voting classifier approaches. For the present data, SVM and

logistic regression approaches exhibited the highest accuracy in perfor-

mance, as we have found in several other data sets examining classifica-

tion using brain data from incarcerated samples (e.g., Cope et al., 2014;

Kiehl et al., 2018; Steele et al. 2015; Steele, Rao, Calhoun, & Kiehl,

2017). Here, we reserve our descriptions of methods and outcomes to

RBF SVM and logistic regression. All classifications and model testing

were run in the R software package using the CARET (for SVM) (Kuhn

et al., 2016) and glmnet (for logistic regression) libraries (Friedman, Has-

tie, & Tibshirani, 2010).

In SVM classification (Friedman et al., 2001; Vapnik, 1998), the

goal is to construct a hyperplane separating the training examples

within the feature space into two subspaces. The classification proce-

dure takes place in two stages: training and testing. During training,

the algorithm finds a hyperplane (i.e., a high dimensional plane) that

maximizes the margin between the training samples of both classes.

The training samples that lie on the margins of the hyperplane are the

called support vectors. These are the units/participants most difficult

to classify and therefore define the boundaries of the hyperplane.

Kernel functions can be applied if the data are not linearly separable

in the original space and allows for group classification based on non-

linear effects, for example, RBF SVM. Once the decision boundary is

learned from the training data, it can be used to predict the class of

new test samples. Subject classification and best parameter selection

via grid search over a reasonable range of values was accomplished

using five repetitions of tenfold cross validation in R.

For comparison, we also implemented an elastic net penalized

logistic regression model. This method is designed to classify data

based on sets of highly correlated predictors. It combines the proper-

ties of LASSO and ridge regression for promoting automatic variable

selection while reducing the impact of highly correlated predictors.

This method is theoretically appropriate due to the correlated nature

of brain data within individuals (Bunea et al., 2011). Both modulated

and unmodulated data from gray matter were used for prediction as

both measures may be incrementally useful for differentiation of indi-

vidual differences (e.g., Meda et al. 2008). For both SVM and logistic

regression classification methods, models were developed on the

training sample (n = 930) and then applied, unchanged, to the hold-

out testing sample (n = 370).

From 30 modulated and unmodulated components derived from

SBM, three components (one modulated and two unmodulated) were

determined to be noise and/or motion-related, and these were

removed from further analyses. Each classification method then uti-

lized brain data from 57 (29 modulated and 28 unmodulated) compo-

nents. Implementation of a feature selection step did not improve

overall performance of these models. Likewise, simple exclusion of

any individual components, list-wise, did not significantly reduce pre-

diction accuracy, suggesting all components are simultaneously, and

incrementally useful in the resulting models. In other words, no single

component can be meaningfully identified as the most important to

classification, apart from other features of the model. In order to

select and illustrate component maps (brain areas) contributing to

classifications, we performed independent samples t tests comparing

males and females using the loading coefficients on each of the

57 components from SBM. Modulated and unmodulated components

showing the highest t values for males > females and females > males

are presented for illustration purposes; however, their relative value

in prediction models requires the simultaneous inclusion of all compo-

nents utilized in the final models. Individuals' SVM loadings are dimen-

sional and scale proportionally with gray matter volume/density, but

loadings are not directly observable as discrete differences between

groups.

To illustrate these differences, we have also carried out two-

sample t tests on gray matter volume (modulated VBM data) for the

full sample of incarcerated males and females (n = 1,300), and a non-

incarcerated comparison group. This provides a more direct visualiza-

tion of discrete gray matter differences between males and females.

3.4 | Nonincarcerated comparison sample

In order to compare and demonstrate the utility of the described SBM

method for classifying sex in a nonincarcerated sample, we applied the

same methods described above to the publicly available data set from

the Brain Genomics Superstruct Project (www.neuroinfo.org/gsp/).

We restricted this sample to right-handed individuals only, yielding a

total of n = 1,448 (male/female). This sample was split randomly into

training (n = 922; 550 female) and testing (n = 526; 296 female) sets.

A total of 30 modulated and 30 unmodulated gray matter components

were defined via SBM. Two modulated and two unmodulated compo-

nents were determined to be noise yielding a total of 56 total compo-

nents (28 modulated and 28 unmodulated) carried into the final

prediction models. Mirroring analyses above, SVM and penalized logis-

tic regression were carried out to classify males and females.

4 | RESULTS

Classification tables (training and testing samples) are provided for

both SVM and elastic net logistic regression (see Tables 2–5). Cross-

validated training samples yielded overall classification accuracy at

98.6 and 96.7% for SVM and logistic regression, respectively. Testing

validation on the naïve hold-out set revealed generalizable overall

classification accuracy at 93.8% for SVM and 93.0% for logistic

regression.

TABLE 2 SVM classification of male and female offenders (training

sample, N = 930)

Classified as female Classified as male

Females (n = 211) 201 10

Males (n = 719) 3 716

204 classified as female 726 classified as male

TABLE 3 Logistic regression classification of male and female

offenders (training sample, N = 930)

Classified as female Classified as male

Females (n = 211) 191 20

Males (n = 719) 11 708

202 classified as female 728 classified as male
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In order to illustrate the structural components that are used as

features in these classifications, independent samples t tests com-

paring males and females on individuals' loading coefficients in SPSS

v20 were carried out on all 57 (29 modulated and 28 unmodulated)

SBM components. A selection of components demonstrating signifi-

cant differences between males and females is provided in Figures 1

and 2. These component maps show the spatial organization of a

selection of four (out of 57 total) structural networks that were use-

ful in the classification models. These four were selected by carrying

out t tests between males and females in the training sample

(n = 930) on the loading coefficients for all components. For illustra-

tive purposes components in loadings for gray matter volume (mod-

ulated; Figure 1) and concentration (unmodulated; Figure 2) were

larger for males (blue) and females (orange) are presented. These

maps do not represent volumetric differences, per se, between men

and women, but simply the organization of structural components

across the entire sample. Increasing volume or density in the

highlighted regions is distinguishing of males and females in the

classification of this sample. A component that is significantly larger

for females, for example, indicates that females have larger loading

TABLE 4 SVM classification of male and female offenders (testing

sample, N = 370)

Classified as female Classified as male

Females (n = 75) 66 9

Males (n = 295) 14 281

80 classified as female 290 classified as male

TABLE 5 Logistic regression classification of male and female

offenders (testing sample, N = 370)

Classified as female Classified as male

Females (n = 75) 62 13

Males (n = 295) 13 282

75 classified as female 295 classified as male

FIGURE 1 Series represents a generic human brain, sliced top to bottom in 4 mm slices. Colored regions represent the gray matter volume

(modulated) associated with a specific component derived from source-based morphometry. Blue represents component areas with higher loading
for males (t = 14.02, p < .001). Orange represents component areas with higher loading for females (t = 10.77, p < .001). Higher loadings are
dimensionally proportional to higher volume in these regions, but do not represent direct differences between males and females (see Figure 3).
Colored bars are z-values for the spatial extent of the individual components across subjects [Color figure can be viewed at wileyonlinelibrary.com]
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coefficients for that component than males, and these differences

(across 57 components) were ultimately useful for classification.

These loading coefficients thus scale proportionally with volumetric

differences, which can be directly visualized with two-sample t tests

of VBM data.

4.1 | VBM comparison

t-Tests directly comparing gray matter volume and density between

males and females are shown in Figure 3. These brain maps summa-

rize voxel-by-voxel statistics across the entire brain illustrating areas

with relatively higher gray matter volume in males and females. SBM

component differences and t test comparisons confirm prominent

regional differences include orbitofrontal and frontopolar regions, pro-

portionally larger in females, and anterior/medial temporal regions,

proportionally larger in males (see Figure 3).

4.2 | Nonincarcerated comparison sample

SBM-based classification results for the nonincarcerated comparison

sample were virtually identical to those from the incarcerated sample.

Classification on the naïve testing data (n = 526) produced overall

accuracy of approximately 93.5% for SVM and 94.1% for penalized

logistic regression methods. Confusion matrices for these methods

are provided in Tables 6 and 7.

5 | DISCUSSION

The purpose of this study was twofold. First, we set out to examine

the reliability of sexual dimorphism in the brain among a large incar-

cerated sample, extending work carried out by others in nonincarcer-

ated healthy control subjects (cf. Chekroud et al., 2016). Second, we

FIGURE 2 Series represents a generic human brain, sliced top to bottom in 4 mm slices. Colored regions represent the gray matter density

(unmodulated) associated with a specific component derived from source-based morphometry. Blue represents component areas with higher
loading for males (t = 6.02, p < .001). Orange represents component areas with higher loading for females (t = 4.53, p < .001). Higher loadings
are dimensionally proportional to higher gray matter concentration in these regions, but do not represent direct differences between males and
females (see Figure 3). Colored bars are z-values for the spatial extent of the individual components across subjects [Color figure can be viewed at
wileyonlinelibrary.com]
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aimed to demonstrate the utility of an ICA-based quantification

method of gray matter for predicting sex from brain data, rather than

relying on preestablished anatomical divisions of the brain. As

expected, our results demonstrate that sexual dimorphism in brain

structure is highly apparent among incarcerated samples, and the mul-

tivariate methods used to quantify gray matter allowed greater than

93% accuracy in classifying individuals as male or female. These find-

ings are an important incremental step for elucidating neurobiological

influences on male and female criminal behavior, underscoring the

importance of sex differences in antisocial brains. Furthermore, this is

the first demonstration of brain-based sex classifications in an incar-

cerated sample, demonstrating that multivariate patterns of gray mat-

ter are reliably dimorphic between sexes among male and female

inmates. Finally, to our knowledge, this is the first report to demon-

strate that ICA-based parcellation of brain anatomy is as effective, if

not more reliable, than traditional atlas-based approaches or VBM for

defining sex-specific differences.

The implications of this work are multifaceted and stand to

encourage more precise scientific work aimed at understanding of the

biological influences on crime. Our data suggest that the brain struc-

ture of antisocial males and females are no less distinguishable than

what has been demonstrated among normative samples. This supports

the notion that antisocial behavior in women should also be examined

independently from conclusions that have been drawn from a tradi-

tionally male-focused literature. It also emphasizes the importance of

considering biological–behavioral patterns separately in each gender,

or at least considering the moderating effects of sex in these

outcomes.

More generally, our findings challenge recent suggestions that

male and female brains are essentially indistinguishable (Joel et al.,

2015). The present findings add to a number of demonstrations that

multivariate patterns in brain anatomy are quite reliable at classifying

individual male and female brains (Chekroud et al., 2016; Del Giudice

et al., 2015, 2016; Lao et al., 2004). While we agree that considerable

overlap exists in the distribution of individual brain measures, conclud-

ing their effective equivalence misrepresents the complexity of the

issue. The consequence of this would be to mistakenly undermine the

value of drawing on sex differences to better understand individual

differences in healthy and disordered brain function and behavior,

including important differences in the incidence and progression of

disease and psychopathology.

We suspect that conclusions endorsing the uniformity of male

and female brains are at least partially undergirded by a benevolent

motivation to subvert sexist attitudes. As noted above, neuroanatomi-

cal sexual dimorphism is a perpetually controversial topic since it has

often been used as a defense of prejudiced beliefs, sex-based stereo-

types, and categorical limitations in abilities. Furthermore, it has often

been misappropriated to justify unfair or unequal treatment in social

domains. What should be clear, however, is that sexist interpretations

as well as the notion of equivalence between sexes both misconstrue

and undermine the true value of understanding sex differences. The

implicit presumption in both of these positions seems to be that differ-

ent must mean unequal, branding one as inferior, but males and

females do not need to be identical to be treated equally. Further-

more, developing a better understanding of the origins and conse-

quences of those differences may be imperative to continued

progress in behavioral neuroscience. Understanding the extent and

boundaries of sex-based differences in the brain will ultimately help

us better interpret differences in mental health issues, behavior, mor-

tality, and the fundamental causes and contextual limitations of these

differences.

The other important aim of this study was to demonstrate that a

multivariate, data-driven technique for parceling independent compo-

nents of brain anatomy (ICA) is an effective method for quantifying

these sex-based differences. While sexual dimorphism in the brain has

been studied for over a century, we are no longer limited to weighing

postmortem brains, as Broca did in the late 19th century (Broca,

1861), or inferring in vivo brain size from cranial circumference (Lee &

Pearson, 1901; Rushton, 1992). Major historical innovations including

MRI have been coupled with increasingly sensitive analytic methods,

like those applying ICA to MRI data. Improving the techniques and

testing novel ways of quantifying brain data are instrumental steps in

improving the utility of brain data for practical purposes. Comparing

our data with studies that have used automatic parcellation, we dem-

onstrate comparable, and even slightly improved classification accu-

racy. This may be the result of the ICA methods partitioning variance

in a way that is optimized for quantifying individual differences in a

way that increases sensitivity (Allen, Erhardt, Wei, Eichele, & Calhoun,

2012; Calhoun, Pearlson, & Pekar, 2001).

Components derived from ICA demonstrate voxels of gray matter

that vary systematically with one another across subjects. The loading

coefficients from the ICA solution are what successfully classify indi-

viduals as males and females in this demonstration. These loading

coefficients indicate the relative contribution of an individual to the

ICA solution that gave rise to that component. Thus, individuals with

smaller absolute loading coefficients for a given component are less

important for identifying and quantifying that network. The illustrative

components provided in Figures 1 and 2 should not be interpreted

directly as volumetric differences between males and females. Instead,

values in each component are indicative of a pattern of gray matter

structure that is more discriminative of males (blue) and females

(orange) in our sample. Still, these loadings will scale proportionally

with gray matter volume, and t tests comparing volume directly across

sex are provided for ease of viewing.

TABLE 6 SVM classification of nonincarcerated males and females

(testing sample, N = 526)

Classified as female Classified as male

Females (n = 296) 286 10

Males (n = 230) 24 206

310 classified as female 216 classified as male

TABLE 7 Logistic regression classification of nonincarcerated males

and females (testing sample, N = 526)

Classified as female Classified as male

Females (n = 296) 284 12

Males (n = 230) 19 211

303 classified as female 223 classified as male
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Anatomically, Figure 1 shows a component of increasing gray

matter volume around the amygdala and anterior temporal cortex that

is discriminating of males (blue area), while increased temporoparietal

volume (BA40) extending into somatosensory areas is more discrimi-

nating of females (orange areas). Figure 2 shows that increased den-

sity in the anterior insula and medial prefrontal cortex is

discriminating of males, while increasing density in the frontopolar

and ventromedial/orbitofrontal gray matter is more discriminating of

females. t-Test maps (Figure 3) illustrate how these regions are sys-

tematically reflected in volumetric comparisons of males and females

as well.

Importantly, brain regions differing between males and females

have conspicuous roles in many cognitive features that align with pre-

viously identified patterns relevant to antisocial behavior. The amyg-

dala plays a well-known role in detecting threat and in fear

conditioning and coordination of responses to threat (Wilensky,

Schafe, Kristensen, & LeDoux, 2006). Exaggerated activity in the

amygdala and diminished orbitofrontal activity has been associated

with patterns of reactive aggression and violence (Coccaro, McClos-

key, Fitzgerald, & Phan, 2007; Meyer-Lindenberg et al., 2006). The

anterior temporal cortex (temporal pole, BA38) is tightly connected to

limbic and paralimbic structures influencing complex social and emo-

tional processing (Olson, Plotzker, & Ezzyat, 2007). Lower volume and

functioning in these regions have also been associated with dimin-

ished inhibition of violent and aggressive behavior (Blair, 2016; Coc-

caro et al., 2007; Tiihonen et al., 2008). The frontopolar and

orbitofrontal regions are important in moral judgment and planning/

executing behavior, including incorporating contingencies that involve

consequences and other learned reinforcement (Greene, & Haidt,

2002; Moll, Oliveira-Souza, Bramati, & Grafman, 2002). The temporo-

parietal junction is also fundamental for execution of attentional shifts

required for perspective-taking, theory of mind, and empathy

(Decety & Lamm, 2007). It is noteworthy, however, that these prevail-

ing patterns in antisocial and externalizing populations have been

studied almost exclusively among males. Still, it remains reasonable to

suspect that higher relative rates of antisocial behavior, and particu-

larly violent-antisocial behavior, in males may be tied to sex-specific

differences in these brain areas (cf. Raine et al. 2011).

While on-average differences (cf. Figure 3) in these regions have

been recognized previously in healthy samples (Ruigrok et al., 2014;

Sacher et al., 2013), it is conceptually important that the current work

has demonstrated multivariate models that approach something closer

to truly dimorphic patterns (see McCarthy et al. 2012), effectively dif-

ferentiating individuals into categorical groups based on intrinsic

structural networks (via SBM components). Demonstrating these pat-

terns highlights that antisocial behavior in men and women occurs in

the context of unique neural architecture that accompanies highly reli-

able dimorphic sex differences. It further underscores the importance

of accounting for sex differences when conducting cognitive neurosci-

ence research among forensic samples.

5.1 | Limitations, future directions, and conclusions

The results of the present study are accompanied by a number of limi-

tations that should promote additional research on these important

topics. Our study examines a relatively simple model intended to

account primarily for the influence of biological sex on volumetric

brain data, but many other moderating variables and quantitative

methods are likely to improve our understanding of this topic. The

present descriptions of sexual dimorphism in the human brain remain

relatively macroscopic and imprecise. Future studies should examine

discriminability based on measures that include functional activity as

well as structural and functional connectivity (e.g., Ingalhalikar et al.,

2014; Yaesoubi et al., 2015). Sex-related differences in brain structure

and function are likely to interact with age as well (Brain Development

Cooperative Group, 2012; Lenroot et al., 2007). In this study, we used

age as a covariate in our models, but future studies may examine how

this discriminability changes more precisely as a function of develop-

mental progress over the lifespan (see also Kiehl et al., 2018).

The present study examined sexual dimorphism among incarcer-

ated offenders primarily to establish essential discriminability and

underscore the value of considering the moderating effects of sex/-

gender in forensic neuroscience. We ardently condemn the historically

slippery perspective of relying on established brain differences to jus-

tify inequitable treatment based on prejudice. We simultaneously

FIGURE 3 t-Tests demonstrating volumetric comparisons between

males and females in the incarcerated (a) and nonincarcerated (b:
Genomics Superstruct) samples. Orange maps show gray matter
relatively larger in females; blue maps show gray matter relatively
larger in males. These figures are intended as a succinct summary of
regional gray matter differences for ease of viewing; however,

classification models were based on 57 components of gray matter
derived from source-based morphometry (e.g., Figures 1 and 2) [Color
figure can be viewed at wileyonlinelibrary.com]
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caution against the conclusion that male and female brains are indis-

tinguishable, as this has the potential to undermine the real utility of

these data in understanding our diversity as a species. It should be

clear from these data that males and females exhibit morphometric

differences that are reliable enough to predict sex with high individual

specificity. The way we choose to utilize this information can either

improve ongoing scientific rigor or alternatively reinforce obsolete

ideas and stagnate progress.
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