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A B S T R A C T

Age is one of the best predictors of antisocial behavior. Risk models of recidivism often combine chronological
age with demographic, social and psychological features to aid in judicial decision-making. Here we use in-
dependent component analyses (ICA) and machine learning techniques to demonstrate the utility of using brain-
based measures of cerebral aging to predict recidivism. First, we developed a brain-age model that predicts
chronological age based on structural MRI data from incarcerated males (n=1332). We then test the model's
ability to predict recidivism in a new sample of offenders with longitudinal outcome data (n=93). Consistent
with hypotheses, inclusion of brain-age measures of the inferior frontal cortex and anterior-medial temporal
lobes (i.e., amygdala) improved prediction models when compared with models using chronological age; and
models that combined psychological, behavioral, and neuroimaging measures provided the most robust pre-
diction of recidivism. These results verify the utility of brain measures in predicting future behavior, and suggest
that brain-based data may more precisely account for important variation when compared with traditional proxy
measures such as chronological age. This work also identifies new brain systems that contribute to recidivism
which has clinical implications for treatment development.

1. Introduction

A practical approach for differentiating risk levels among offenders
is to develop algorithms that identify variables that predict how likely
inmates are to commit another crime after their release from prison.
Meta-analyses have identified several key risk variables including
criminogenic needs, demographics, social achievement, socio-economic
status, and intelligence (Gendreau et al., 1996). Additional research has
identified empirically derived static (e.g., past criminal history, offense
type) and dynamic (e.g., impulsivity, drug use, social support) risk
factors that have led to significant improvements in predicting future
antisocial behavior (Douglas et al., 2002; Harris et al., 1993; Yang et al.,
2010). These risk assessment procedures are useful in judicial decision-

making and in creating release plans that minimize risk factors (e.g.,
substance abuse) and accentuate protective factors (e.g., social support,
stable employment).

Developments in bio-psycho-social models have identified risk variables
with strong relevance to antisocial behavior. Age, for example, is a powerful
variable in the prediction the likelihood for antisocial behavior (Gendreau
et al., 1996). Indeed, if we consider the release of two inmates from prison,
a 25-year-old and a 35-year-old, all else being equal, the 25-year-old is
roughly 25% more likely to be re-incarcerated within five years following
their release than is the 35-year old (Durose et al., 2014). Age also features
prominently in societal decisions about holding people accountable for their
behavior, as our treatment of juvenile offenders is categorically different
than that of adults.
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Chronological age, however, may be an imprecise measure in these
risk equations. That is, within the spectrum of all 25-year olds, some of
the cohort may be lower than average risk and some may be higher than
average risk to re-offend. In other words, chronological age does not
account for individual differences in the physiological and neurocog-
nitive aging processes. Recent developments have shown that biological
aging of the brain can be quantified using MRI techniques. Franke and
colleagues were among the first to develop regression models pre-
dicting chronological age from structural MRI of the brain with high
accuracy in healthy adults (Franke et al., 2010), as well as children and
adolescents (Franke et al., 2012). MRI-based measures of brain-age
have subsequently been applied successfully as an indicator of cognitive
decline in aging populations (Gaser et al., 2013), and further predicts
physiological indices of aging and mortality (Cole, 2017; Cole et al.,
2017). Still others have shown relevant effects of brain-age in the
context of psychopathology (Koutsouleris et al., 2013; Schnack et al.,
2016) and brain injury (Cole et al., 2015). The recognized utility of
brain-based measures of aging has expanded into multimodal imaging
applications (Brown et al., 2012; Dosenbach et al., 2010), and methods
improving the accuracy of these measures continue to progress in these
domains.

Despite age being a strong indicator of the likelihood for recidivism,
there have been no published attempts applying an MRI-based model of
brain-age to the prediction of antisocial behavior. In prior work, our
team has demonstrated the utility of brain-based measures of beha-
vioral inhibition in predicting likelihood for rearrest (Aharoni et al.,
2013; Steele et al., 2015). Here, we extend this work by developing a
brain-based model of age using multivariate analyses of structural MRI
data and apply this method to improve prediction of antisocial out-
comes. Specifically, we test whether our brain-age measures improve
the accuracy of prediction models for rearrest over and above chron-
ological age and other variables used in our prior analyses (Aharoni
et al., 2013). To our knowledge, this is the first attempt to develop a
brain maturation model to distinguish individuals who are more or less
likely to re-offend following release from prison.

2. Materials and methods

All study procedures described below were carried out in ac-
cordance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving humans and ap-
proved by the Ethical and Independent Review Services. Individuals
18 years of age or older provided written informed consent and in-
dividuals younger than 18 years of age provided written informed as-
sent in conjunction with parent/guardian written informed consent.

2.1. Participants

Participants included 1332 male offenders (sample 1) ranging from
12 to 65 years of age (M=30.5, SD=11.46) and 93 male offenders
(sample 2 (Aharoni et al., 2013)), ranging from 20 to 52 years of age
(M=32.94, SD=7.83) for which follow-up recidivism data was
available from official arrest records. None of the participants in sample
1 were included in sample 2. Based on the NIH racial and ethnic clas-
sification, 4% of the sample self-identified as American Indian/Alaskan
Native, 12% as Black/African American, 1% as Native Hawaiian or
other Pacific Islander, 29% as White, 22% as Hispanic/Latino, 1%
identified as more than one race, and 30% chose not to respond.

Full-scale IQ was estimated using the Vocabulary and Matrix
Reasoning sub-tests of the Wechsler Intelligence Scale for Children –
4th Edition (WISC-IV; Wechsler, 2003) for participants younger than
18 years of age, and the Wechsler Adult Intelligence Scale – 3rd Edition
(WAIS-III; (Wechsler, 1997)) for participants older than 18 years of age
(M=97.13, SD=13.97)). Mental illness and substance use was as-
sessed using the Kiddie Schedule for Affective Disorders and Schizo-
phrenia (K-SADS; (Kaufman et al., 1997)) for participants younger than

18 years of age and the Structured Clinical Interview for DSM-IV Axis I
Disorders – Patient Version (SCID I-P; (First et al., 1997)).

Participants were excluded from analyses for a history of personal or
familial bipolar or psychotic disorders, or if they had a full-scale
IQ< 70, or were unable to complete a ‘research consent test’ examining
their understanding of the research study. Reported head injuries/
concussions were evaluated for each participant: loss of conscious-
ness> 10mins with persistent symptoms and/or cognitive impairment,
or abnormal radiological findings indicating prior head injury were
grounds for exclusion. This resulted in the exclusion of approximately
10% of consented volunteers.

2.2. MRI acquisition

T1-weighted MRI scans were acquired on the Mind Research
Network (MRN) Siemens 1.5 T Avanto mobile scanner stationed at the
prisons using a multi-echo MPRAGE pulse sequence (repetition
time=2530ms, echo times= 1.64ms, 3.50ms, 5.36ms, 7.22ms, in-
version time=1100ms, flip angle= 7°, slice thickness= 1.3mm,
matrix size= 256×256) yielding 128 sagittal slices with a resolution
of 1.0mm×1.0mm×1.0mm. Images were spatially normalized to
the Montreal Neurological Institute (MNI) template using SPM12, seg-
mented into gray matter, white matter, and cerebrospinal fluid. Both
gray matter volume and density were extracted for analyses. A Jacobian
modulation was performed to preserve total volume (Ashburner and
Friston, 2000, 2005). Gray matter images were resampled to
2×2×2mm and smoothed with a 10mm full-width at half-maximum
(FWHM) Gaussian kernel.

2.3. Experiment 1

ICA of structural MRI (i.e., SBM) was computed from sample 1
(Calhoun et al., 2001; Caprihan et al., 2011; Xu et al., 2009). Thirty
volume and density components were extracted using the GIFT toolbox
(http://mialab.mrn.org/software/gift). Loading coefficients were ex-
tracted for each IC and for each participant. These coefficients were
then used in a stepwise linear regression as independent variables (IVs)
with chronological age as the dependent variable (DV). We identified
19 brain volume and 19 density components (Figs. 1 & 2; Table 2)
accounting for 68.2% and 71.0%, respectively, of the variance in
chronological age.

2.4. Experiment 2

Experiment 2 was designed to use the ICs that accounted for chron-
ological age from Experiment 1 to predict future rearrest in an independent
set of participants (sample 2). Machine learning techniques were used to
identify brain ICs that predicted recidivism from both brain volume and
density. Cox proportional hazards regression models using chronological
and neural age measures were computed and compared.

Sample 2 participants were followed after release from prison and
tracked using official arrest records from 2007 to 2010. The average
follow-up period was 21.96months (range: 1.51 to 49.55months; see
(Aharoni et al., 2013)). Psychopathic traits were assessed among
sample 2 participants using the Hare Psychopathy Checklist-Revised
(PCL-R; (Hare, 2003)) (M Total Score= 23.41, SD=6.89; scores for
n=11 unavailable). Full-scale IQ was estimated using the Vocabulary
and Matrix Reasoning sub-tests of the WAIS-III (M=94.27,
SD=12.75; n=11 subjects did not complete IQ). Mental illness and
substance dependence was assessed using the SCID I-P (First et al.,
1997). An average drug abuse/dependence measure was calculated
from the following drug classes: sedatives (6% met for dependence),
cannabis (61% met for dependence), stimulants (49% met for depen-
dence), opioids (23% met for dependence), cocaine (56% met for de-
pendence), and hallucinogens (9% met for dependence); substance use
scores were unavailable for n=13 participants. Additionally, 54% met
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criteria for alcohol dependence. Based on the NIH racial and ethnic
classification, 5% of the sample self-identified as American Indian/
Alaskan Native, 6% as Black/African American, 22% as White, 41% as
Hispanic/Latino, 1% identified as more than one race, and 25% chose
not to respond.

2.4.1. Analysis for experiment 2
Using the neural age measures identified in Experiment 1, loading

parameters for the ICs were estimated from participants in Experiment
2 using spatio-temporal (dual) regression (Erhardt et al., 2011). In this
way, the data in Experiment 2 was projected from the initial ICA cal-
culated on participants from Experiment 1. This step avoids bias in IC
definition as none of the participants in Experiment 2 were used to
define the ICs related to age. The 19 brain volume measures accounted
for 59.0% of variance in age in Experiment 2, compared to 68.2% in

Experiment 1. The 19 density measures accounted for 67.1% of var-
iance in age in Experiment 2 compared to 71.0% in Experiment 1. When
combined into a single regression the 19 volume and 19 density vari-
ables account for 75.0% of variance in age in Experiment 2.

In an attempt to reduce model complexity in predicting recidivism, we
used a sequential K best feature selection with two nested cross validation
loops (10-fold for outer loop and 3-fold for inner loop) using Support Vector
Machines (SVM) as a criterion function to identify which components were
most useful in predicting rearrest (Jain et al., 2000). The 10-fold cross va-
lidation outer loop cycles across subjects and the 3-fold inner loop cycles
across a set of parameters for the SVM model. The goal of feature selection
is to prune the set of IC (or behavioral) variables to identify the best dis-
criminative set. Non-informative features add noise and dimensionality to
the data that result in poor classification performance. Sequential K best
feature selection selects a set of variables from the input feature set for

Fig. 1. Source-based morphometry (SBM) of 19 components of gray matter volume identified to account for 68.2% of the variance of chronological age. Components
14 (temporal pole) and 24 (inferior temporal gyrus) were feature selected to be beneficial in predicting rearrest. Components 3 (cerebellum), 4 (inferior and superior
parietal gyrus and occipital lobe), 5 (putamen), 6 (cerebellum), 8 (superior and middle frontal gyrus and supplementary motor area), 10 (precentral and postcentral
gyrus), 11 (superior parietal gyrus and occipital lobe), 12 (inferior parietal and postcentral gyrus), 14 (temporal pole), 15 (middle temporal gyrus), 16 (cerebellum
and lingual gyrus), 19 (fusiform and inferior temporal gyrus), 20 (orbitofrontal cortex and insula), 22 (cerebellum, hippocampus, and amygdala), 25 (middle and
inferior temporal gyrus), 26 (cerebellum), 27 (inferior and middle frontal gyrus), and 28 (precentral gyrus) were not selected to be beneficial in predicting rearrest.
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classifying individuals into groups (i.e., rearrested [n=50] versus non-re-
arrested [n=43]). This feature selection is a method that iterates selecting
K best features based on ANOVA F-scores between the two classes of in-
terest. After this step, the scores are averaged across the 10 folds and the
maximum resulting accuracy score is selected as the best K features. SVM
classifier is a binary classifier that aims at finding a hyperplane that max-
imizes the margin between the two classes. This was implemented using
built in feature selection functions in Python using the Scikit-Learn library.
Using this method, two volume1 and five density2 ICs were identified to be
useful in predicting rearrest as a binary outcome (rearrest vs not). These

neural age measures identified in this feature selection step were then used
in Cox proportional hazards regression predicting time to rearrest.

Cox regression takes ‘time at risk’ into account by using time to
rearrest as the outcome variable, calculated as the number of days
between release from incarceration and the rearrest date, or the follow-
up date for those who were not rearrested. Arrest data was collected
using a nationwide commercial search company (SSC, Inc). Those who
were not rearrested are included in the analyses and considered to be
‘censored’ cases, meaning they potentially could still re-offend, ac-
counting for variable lengths of follow-up. Reliability of the Cox re-
gressions was assessed using bootstrapping with 9999 iterations. Cox
regression models were computed with covariates from (Aharoni et al.,
2013): PCL-R Factor 1, PCL-R Factor 2, the interaction of PCL-R Factor
1 and PCL-R Factor 2, drug and alcohol dependence, false alarm rate

Fig. 2. Source-based morphometry (SBM) of 19 components of gray matter density identified to account for 71.0% of the variance of chronological age. Components
4 (angular gyrus), 16 (inferior parietal gyrus), 21 (temporal pole), 24 (cerebellum), and 26 (occipital lobe) were feature selected to be beneficial in predicting
rearrest. Components 2 (precentral and postcentral gyrus), 3 (middle frontal gyrus), 10 (cerebellum), 12 (cerebellum), 14 (cerebellum, hippocampus, and amygdala),
17 (cerebellum), 18 (putamen), 19 (superior parietal gyrus and precuneus), 20 (fusiform gyrus, calcarine fissure, lingual gyrus, and occipital lobe), 25 (precuneus and
calcarine fissure), 27 (fusiform gyrus, calcarine fissure, lingual gyrus, and occipital lobe), 28 (superior and middle frontal gyrus), 29 (middle and inferior temporal
gyrus), and 30 (orbitofrontal cortex) were not selected to be beneficial in predicting rearrest.

1 Volume components identified with feature selection: Components 14 and 24
2 Density components identified with feature selection: Components 4, 16, 21, 24, and

26.
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from the Go/No Go task, ACC activity extracted from the Go/No Go
task, and chronological age, as well the brain-age measures identified
here. Independent samples t-tests were performed on these variables to
assess differences between offenders who were rearrested and those
who were not (see Table 1).

A total of eight Cox proportional hazards regressions were com-
puted with rearrest as the binary DV and time-to-rearrest as the con-
tinuous DV. The models were:

Model 1) chronological age only (replicating an analysis in (Aharoni
et al., 2013) minus three participants who were excluded due to
motion contaminated structural MRIs);

Model 2) chronological age and the covariates from (Aharoni et al.,
2013): PCL-R Factor 1, PCL-R Factor 2, the interaction of PCL-R
Factor 1 and PCL-R Factor 2, drug and alcohol dependence, false
alarm rate from a Go/No Go task, Go/No Go anterior cingulate fMRI
data (this model replicated that in (Aharoni et al., 2013) minus three
participants who were excluded due to motion contaminated
structural MRIs).
Model 3) brain volume measures of age-related components selected
to be useful in predicting rearrest (i.e., 2 volume components);
Model 4) the two brain volume variables in Model 3 and covariates
from (Aharoni et al., 2013): PCL-R Factor 1, PCL-R Factor 2, the
interaction of PCL-R Factor 1 and PCL-R Factor 2, drug and alcohol
dependence, false alarm rate from the Go/No Go task, anterior
cingulate activity extracted from the Go/No Go task);
Model 5) variables in Model 4 and chronological age;
Model 6) brain-age density variables (5 density components).
Model 7) brain density components related to age and covariates
from (Aharoni et al., 2013): PCL-R Factor 1, PCL-R Factor 2, the
interaction of PCL-R Factor 1 and PCL-R Factor 2, drug and alcohol
dependence, false alarm rate from the Go/No Go task, Go/No Go
ACC activity);
Model 8) variables in Model 7 and chronological age.

In combination, these models allow for a full picture of how well
brain-age measures predict rearrest, whether brain-age adds in-
crementally to models with chronological age, and if chronological age
is necessary in models with brain-age measures. Goodness-of-fit were

Table 1
Details on cohorts that were re-arrested versus not re-arrested.

Non re-arrested group Re-arrested group

N Mean SD N Mean SD

Age at Scan 31 32.74 7.929 50 30.96 7.45
IQ 31 98.06 12.770 48 92.83 12.28
Years of education 31 10.87 2.262 50 10.28 2.52
PCL-R total score 31 22.35 6.432 47 24.32 6.94
PCL-R factor 1 31 7.45 3.075 47 7.38 3.27
PCL-R factor 2 31 13.06 3.924 47 14.64 3.58

Note. No significant differences between groups across all variables. PCL-R
refers to the Hare Psychopathy Checklist-Revised.

Table 2
Linear stepwise regressions predicting chronological age with volume and density SBM components.

Predictors β t Sig. Predictors β t Sig.

Significant volume predictors Significant density predictors
10 −0.186 −6.887 < 0.001 2 −0.200 −6.769 <0.001
16 −0.308 −12.850 < 0.001 18 −0.440 −16.047 <0.001
22 0.431 20.151 < 0.001 29 −0.291 −10.134 <0.001
15 −0.167 −6.078 < 0.001 26 0.114 6.116 <0.001
28 −0.147 −5.310 < 0.001 24 −0.197 −11.104 <0.001
5 −0.160 −7.911 < 0.001 12 −0.203 −8.725 <0.001
24 −0.293 −10.261 < 0.001 10 0.113 7.057 <0.001
4 0.231 7.776 < 0.001 30 −0.086 −4.568 <0.001
6 −0.153 −6.927 < 0.001 3 −0.067 −3.541 <0.001
19 0.115 5.388 < 0.001 19 0.158 4.577 <0.001
11 −0.067 −3.693 < 0.001 20 0.076 4.574 <0.001
27 0.061 3.785 < 0.001 27 0.060 3.882 <0.001
20 0.145 5.215 < 0.001 16 −0.089 −3.735 <0.001
12 −0.099 −3.560 < 0.001 25 0.060 3.542 <0.001
3 0.073 3.378 < 0.001 28 −0.098 −3.172 0.002
14 0.101 4.802 0.001 21 0.102 3.653 <0.001
26 0.083 3.500 < 0.001 17 −0.070 −3.132 0.002
8 −0.130 −4.129 < 0.001 14 0.057 2.865 0.004
25 −0.070 −2.858 0.004 4 0.041 2.607 0.009

Nonsignificant volume predictors Nonsignificant density predictors
1 0.012 0.505 0.614 1 0.025 0.609 0.542
2 0.009 0.472 0.637 9 −155.645 −1.571 0.116
7 −0.037 −1.653 0.098 11 −0.035 −1.445 0.149
9 0.009 0.402 0.688 13 0.026 1.664 0.096
13 0.009 0.554 0.580 15 −0.015 −0.858 0.391
17 −0.026 −0.951 0.342 22 0.010 0.599 0.549
18 0.002 0.099 0.921 23 0.003 0.204 0.838
23 0.042 1.682 0.093
29 0.024 1.384 0.167
30 0.037 1.920 0.055

Note. On the left side of the table is the final step of a linear stepwise regression predicting chronological age with volume SBM components. Significant components
are listed in the order in which they were selected for the model. These 19 components account for 68.2% of the variance in chronological age and, taken together,
are a neural measure of age. R2= 0.682, R=0.826, p < .001. Component numbers are listed for SBM components. On the right side of the table is the final step of a
linear stepwise regression predicting chronological age with density SBM components. Significant components are listed in the order in which they were selected for
the model. These 19 components account for 71.0% of the variance in chronological age and, taken together, are a neural measure of age. R2= 0.710, R=0.843
(p < .001). Components 7 and 8 are not included in above table due to having tolerance values of 0.000. Tolerance is an indication of the percent of variance in the
predictor that cannot be accounted for by the other predictors; hence, very small values (e.g., 0.000) indicate a predictor is redundant. Component numbers are listed
for SBM components.
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calculated for each model and compared between models by calculating
the Akaike Information Criterion (AIC; (Akaike, 1992)), Likelihood
ratio test and Score log rank test.

3. Results

3.1. Experiment 1

Stepwise linear regressions were calculated for brain volume mea-
sures predicting chronological age. Nineteen brain volume and 19
density ICs (Figs. 1 & 2; Table 2) accounting for 68.2% and 71.0%,
respectively, of the variance in chronological age. A four-dimensional
NIFTI file containing these ICs is available from the corresponding
author.

3.2. Experiment 2

The first two models confirmed previous analyses from (Aharoni
et al., 2013): Prediction Model 1, which only tested whether chron-
ological age negatively predicted recidivism, was significant (p= .044;
one-tailed; Table 3). Model 2 was significant (p= .030) and PCL-R
Factor 2 (p= .005), anterior cingulate activity from the Go/No Go Task
in (Aharoni et al., 2013) (p= .0005), and chronological age (p= .028)
were unique predictors in the expected direction (Table 3). Although
chronological age was a significant predictor of re-offending in the Cox
regression, post-hoc t-test indicated that age (at time of release to the
community) did not significantly differ between those who re-offended
and those who did not (t(91)= 1.60, p= .113). Anterior cingulate
activity did differ between groups (t(91)= 2.01, p= .047) and PCL-R
Factor 2 was marginally different between groups (t(85)= 1.82,
p= .073).

Models 3–5, which used brain-age estimated using volume mea-
sures, were significant. Model 3 (p= .003), which included only brain
volume components, found that Component 14 (temporal pole;
p= .039), and 24 (interior temporal gyrus; p= .037) (Table 4) were
significant predictors in the expected direction. Model 4 (p= .005)
included PCL-R Factor 2 (p= .012), ACC activity (p= .011) and
Component 14 (temporal pole; p= .040) as significant predictors in the
expected directions; Component 24 was a marginally significant pre-
dictor (p < .086; Table 4). Model 5 (p= .001) included PCL-R Factor 2

(p= .014), ACC activity (p= .002), chronological age (p= .002),
Component 24 (inferior temporal gyrus; p= .014), and Component 14
(p= .045) as unique predictors (Table 4).

Using t-tests, less gray matter volume was identified for the re-
arrested group, compared to the not-rearrested group, in Components
14 (temporal pole) and 24 (inferior temporal gyrus), t(91)= 2.74,
p= .007, t(91)= 3.14, p= .002, respectively.

Models 6–8, which used brain-age estimated using density mea-
sures, were significant. Model 6 (p= .004) included Component 21
(inferior frontal/temporal pole; p= .026) as a predictor and
Component 24 as a marginal predictor (p < .080; Table 5). Model 7
(p= .003) included PCL-R Factor 2 (p= .006), ACC activity (p= .001),
and Component 21 (inferior frontal/temporal pole; p= .010), as unique
predictors (Table 5). Model 8 (p= .002) included PCL-R Factor 2
(p= .004), ACC activity (p= .0005), chronological age (p= .016), and
Component 21 (inferior frontal/temporal pole; p= .003) as unique
predictors (Table 5).

Fig. 3 shows maps of the volume (IC 14 and 24) components and
Fig. 4 shows the density (IC 21) component that were significant pre-
dictors of rearrest.

Using t-tests, less gray matter density was measured in the re-
arrested group, compared to the not-rearrested group, in Component 21
(temporal pole), t(91)= 3.53, p < .001. Components 12 (cerebellum)
and 26 (occipital lobe) exhibited a similar, marginally significant, re-
lationship, (t(91)= 1.68, p= .097, t(91)= 1.85, p= .067), respec-
tively. More gray matter density was measured in the rearrested group,
compared to the not-rearrested group, in component 4 (angular gyrus),
16 (inferior parietal gyrus) and 24 (cerebellum), t(91)=−1.99,
p= .049, t(91)=−2.16, p= .034, t(91)=−2.63, p= .010, respec-
tively. Component 20 (fusiform gyrus, calcarine fissure, lingual gyrus, &
and occipital lobe) exhibited a similar, marginally significant, re-
lationship, t(91)=−1.77, p= .079.

The pattern of AIC results is consistent with the known complexity
of predicting recidivism. Simple models, that included only chron-
ological age or brain-age measures, had relatively high AIC values.
Model 1 (chronological age only) was 405.62. Similarly, Model 3
(brain-age, volume) and Model 6 (brain-age, density) had high AIC's of
398.22 and 399.34, respectively. More complex models that included
psychological variables and brain variables had better AIC values
(Model 2= 340.41; Model 4=337.19; Model 7= 334.72; Model

Table 3
Preliminary Cox proportional hazards regressions.

Predictor B Boot-
strapped
B

SE (B) Boot-strapped SE
(B)

p-Value 2-tailed/1-
tailed

Exp[B] CI (95%) fo
r exp[B]

Boot-strapped CI (95%) for
exp[B]

Proportion of full model chi-
square

Model 1 rel. age
−0.03 −0.03 −0.02 −0.0002 0.088/0.044 0.97 0.93–1.01 0.93–1.00

2.92

Model 2 PCL-R F1
−0.06 −0.06 0.07 0.07 0.396/0.198 0.94 0.82–1.08 0.80–1.07

0.72

PCL-R F2 −2.60 −2.60 1.01 1.05 0.010/0.005 0.07 0.01–0.53 0.01–0.40 6.67
PCL-R Int. 0.07 0.07 0.25 0.27 0.788 1.07 0.66–1.73 0.65–1.88 0.07
Drug −0.19 −0.19 0.37 0.43 0.609 0.83 0.40–1.72 0.34–1.92 0.26
Alcohol 0.11 0.11 0.20 0.23 0.591 1.11 0.75–1.66 0.73–1.80 0.29
Go/No Go FA −0.01 −0.01 0.01 0.01 0.571 0.99 0.97–1.02 0.97–1.02 0.32
ACC −0.69 0.69 0.21 0.23 0.001/0.0005 0.50 0.34–0.75 0.29–0.72 11.13
Rel. age −0.04 −0.04 0.96 0.03 0.048/0.024 0.96 0.92–1.00 0.91–1.00 3.91

Note. Results of Cox proportional hazards regression analyses examining the predictive effect chronological age (Model 1) and chronological age with covariates
(Model 2) on rearrest. Model 1: Wald(1)= 2.92, p= .088; Likelihood Ratio(1)= 3.02, p= .082; R2= 0.032, Score(logrank)(1)= 2.95, p= .086. Model 2: Wald
(8)= 17.04, p= .030; Likelihood Ratio(8)= 19.19, p= .014; R2= 0.20, Score(logrank)(8)= 17.87, p= .022. Variables in bold font are unique predictors within
the model; one-tailed p values are provided for a priori predictors. Rel. Age is the participant's age when released from the correctional facility; PCL-R F1 and F2 refer
to Factor 1 and Factor 2 scores from the Hare Psychopathy Checklist–Revised (PCL-R); PCL-R Int. refers to the PCL-R interaction term, formed by multiplying PCL-R
Factor 1 by Factor 2; Drug refers to the participant's average use of the following drug classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens
collected from the Scheduled Clinical Interview for DSM-IV Axis I Disorders – Patient Version (SCID I/P) and the Kiddie Schedule for Affective Disorders and
Schizophrenia (K-SADS); Alcohol refers to the participant's average use of alcohol collected from the SCID I/P and K-SADS; Go/No Go FA refers to the false alarm rate
to NoGo stimuli; ACC refers to dorsal anterior cingulate cortex mean activation (see Aharoni et al., 2013).
Bold values significant predictors, p < .05.

K.A. Kiehl et al. NeuroImage: Clinical 19 (2018) 813–823

818



5= 330.44; Model 8= 332.27). In summary, Models (4, 5, 7 and 8)
that included brain-age measures and psychological variables were best
supported. Likelihood ratio test and Score log rank test score are pre-
sented in the tables. All reported p values indicate two and/or one tailed
tests (for a priori predictors).

4. Discussion

We confirmed hypotheses that structural brain components related
to age would distinguish offenders who are likely to re-offend from
those who do not re-offend. Brain-age measures (Models 3: R2=0.125
and 6: R2=0.17) accounted for almost four times the variance in the
risk equation for rearrest than did chronological age (Model 1;
R2=0.032). Brain-age incrementally added to risk outcomes that in-
cluded other psychological and behavioral variables (Models 5 and 8)
and, when neural age was included in the model with chronological
age, chronological age was not necessary in predicting rearrest (Models
4 and 7). Reduced gray matter volume and density were identified as
significant predictors of both neural age and rearrest. Specifically, re-
duced gray matter in bilateral anterior/lateral temporal lobes, amyg-
dala, and inferior/orbital frontal cortex was helpful in predicting re-
arrest. This is the first prospective study to report brain-age measures
predict re-offending.

The temporal pole was identified in both volume and density
measures as useful in predicting age and rearrest. The temporal pole is
considered to be a paralimbic region, lying between the amygdala and
orbitofrontal cortex (Mesulam, 2000). Anterior and medial temporal
lobe damage is classically involved in Klüver–Bucy syndrome (Klüver
and Bucy, 1938), and atrophy of this region is typically implicated in

frontotemporal dementia (Hodges, 2001; Mummery et al., 2000). Both
of these conditions involve symptoms that include changes in person-
ality and socially inappropriate behavior (Thompson et al., 2003).
Gorno-Tempini and colleagues studied temporal atrophy in a patient
(JT) who had marked changes in behavior and personality, notably
transitioning from someone who was extraverted, open, and empathic
to an individual characterized by neuroticism and lacking empathy
(Gorno-Tempini et al., 2004). The temporal pole is involved in theory of
mind, inferring the desires, intentions, or beliefs of others (Baron-Cohen
et al., 1999; Fletcher et al., 1995; Gallagher et al., 2000; Goel et al.,
1995; McCabe et al., 2001; Walter et al., 2004). It is active during tasks
that require subjects to think about others' thoughts and emotions
(Grèzes et al., 2004) and moral decision-making (Heekeren et al., 2003;
Moll et al., 2002) and while inferring the emotional states of others
(Carr et al., 2003; Farrow et al., 2001; Olson et al., 2007; Völlm et al.,
2006). Olson et al. (2007) suggest that the general function of the
temporal pole is to couple emotional responses to highly processed
sensory stimuli and storage of perception-emotion linkages for semantic
memory.

Reduced gray matter volume and density in this region has been
identified in psychopathic individuals (Cope et al., 2014; Ermer et al.,
2012; Ermer et al., 2013; Kiehl, 2006) and has been found to be un-
iquely predictive of committing homicide among juvenile offenders
(Cope et al., 2014). Reduced volume of the amygdala, a structure well-
known to be critical for affective processing, has also been associated
with psychopathic traits and longitudinal patterns of violent behavior
(Pardini et al., 2014).

In the present sample, those who recidivated had lower volume in
the temporal pole than did those who did not re-offend. It is reasonable

Table 4
Cox proportional hazards regression with volume SBM components and other covariates.

Predictor B Boot-strapped
B

SE (B) Boot-strapped
SE (B)

p-Value 2-
tailed/1-tailed

Exp[B] CI (95%) for exp
[B]

Boot-strapped CI (95%) for
exp[B]

Proportion of full model
chi-square

Model 3
ICv 14 −0.295 −0.304 0.167 0.174 0.078/0.039 0.745 0.537–0.034 −0.626 - 0.055

3.11

ICv 24 −0.302 −0.308 0.169 0.181 0.074/0.037 0.740 0.531–1.029 −0.626 – 0.055 3.20
Model 4

PCL-R F1 −0.422
-0.047

0.067 −0.004 0.526/0.263 0.959 0.842–1.09 −0.174–0.098
0.40

PCL-R F2 −2.32 −2.59 1.02 0.069 0.023/0.012 0.099 0.013–0.725 −4.11–0.031 5.18
PCL-R Int. 0.074 0.075 1.017 1.06 0.752 1.08 0.681–1.70 −0.444–0.591 0.10
Drug 0.045 0.054 0.383 0.483 0.907 1.045 0.494–2.214 −0.911–0.981 0.01
Alcohol 0.002 −0.002 0.195 0.231 0.993 1.001 0.683–1.469 −0.448–0.458 0.00
Go/No Go FA −0.005 −0.005 0.012 0.014 0.664 0.995 0.971–1.02 −0.033–0.022 0.19
ACC −0.436 −0.480 0.190 0.232 0.022/0.011 0.647 0.445–0.939 −0.845–0.063 5.24
ICv 14 −0.340 −0.377 0.193 0.221 0.079/0.040 0.712 0.487–1.039 −0.737–0.131 3.10
ICv 24 −0.268 −0.297 0.197 0.230 0.173/0.086 0.764 0.520–1.125 −0.691–0.211 1.85
Model 5

PCL-R F1 −0.034
-0.040

0.074 0.077 0.647/0.323 0.967 0.836–1.118 −0.178–0.122
0.21

PCL-R F2 −2.32 −2.65 1.053 1.125 0.028/0.014 0.099 0.012–0.778 −4.183–0.228 4.84
PCL-R Int. 0.249 0.271 0.253 0.286 0.325 1.283 0.781–2.107 −0.334–0.789 0.97
Drug 0.249 0.285 0.401 0.503 0.533 1.283 0.585–2.82 0.773–1.201 0.39
Alcohol −0.009 −0.007 0.206 0.241 0.963 0.99 0.662–1.483 −0.484–0.460 0.00
Go/No Go FA −0.009 −0.009 0.012 0.014 0.462 0.991 0.967–1.015 −0.037–0.019 0.54
ACC −0.576 −0.645 0.197 0.235 0.004/0.002 0.562 0.381–0.828 −0.967–−0.047 8.47
Rel. age −0.070 −0.078 0.024 0.027 0.004/0.002 0.932 0.889–0.978 −0.115–−0.007 8.35
ICv 14 −0.336 −0.373 0.197 0.228 0.089/0.045 0.715 0.486–1.052 −0.746–0.147 2.90
ICv 24 −0.462 −0.523 0.212 0.249 0.029/0.014 0.629 0.415–0.955 −0.889–0.088 4.74

Note. Results of Cox proportional hazards regression analyses examining the predictive effect neural age defined with volume SBM components (Model 3), neural age
with covariates (Model 4), and neural age with covariates and chronological age (Model 5) on rearrest are presented. Model 3: Wald(2)= 11.87, p= .003, Likelihood
Ratio(2)= 12.42, p= .002, R2= 0.125, Score(logrank)(2)= 12.02, p= .002. Model 4: Wald(9)= 23.56, p= .005; Likelihood Ratio(9)= 24.42, p= .004,
R2= 0.252, Score(logrank)(9)= 24.96, p= .003. Model 5: Wald(10)= 29.3, p= .001; Likelihood Ratio(10)= 33.16, p= .001, R2= 0.326, Score(logrank)
(10)= 32.97, p= .001. Variables in bold font are unique predictors within the model; one-tailed p values are provided for a priori predictors. Rel. Age is the
participant's age when released from the correctional facility; PCL-R F1 and F2 refer to Factor 1 and Factor 2 scores from the Hare Psychopathy Checklist–Revised
(PCL-R); PCL-R Int. refers to the PCL-R interaction term, formed by multiplying PCL-R Factor 1 by Factor 2 scores; Drug refers to the participant's average use of the
following drug classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens collected from the Scheduled Clinical Interview for DSM-IV Axis I
Disorders–Patient Version (SCID I/P) and the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS); Alcohol refers to the participant's average use of
alcohol collected from the SCID I/P and K-SADS; Go/No Go FA refers to the false alarm rate to NoGo stimuli; ACC refers to dorsal anterior cingulate cortex mean
activation (see Aharoni et al., 2013). ICv component numbers are listed for SBM volume components included in the models.
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to suspect that individuals who have lower volume of the temporal pole
may be relatively limited in their ability to couple emotional responses
to cues from their environment, leading to deficits in mentalizing the
actions of others, or theory of mind. These inferred limitations might
contribute to poor decision-making and poor outcomes (i.e., crime).

Another brain-age component identified in our models included
parts of the inferior temporal gyrus (ITG). ITG is involved in higher-
order levels of visual processing in the ventral stream, associated with
the representation of complex object features, such as global shape and
face perception (Haxby et al., 2000). The most basic roles of the ITG are
processing the color and form of objects in the visual field (Kolb and
Whishaw, 2013). ITG is also involved in the attribution of intention
(Brunet et al., 2000) and atrophy in the right ITG is associated with
theory of mind impairments in semantic dementia group (Chan et al.,
2001; Irish et al., 2014). The inferior temporal cortex projects to PFC
regions via the uncinate fasciculus (Ungerleider et al., 1989), a pro-
minent white matter tract shown to be impaired in psychopathy
(Motzkin et al., 2011; Wolf et al., 2015). Thus, the ITG and temporal
pole play related roles in theory of mind processing and age/maturity-
related deficits in these regions are reasonable markers for an increased
propensity towards antisocial behavior.

The orbital frontal cortex was also identified as an age-related
component predicting re-offending. The OFC plays a vital role in using
positive and negative reinforcement valuation to help guide actions and
to aid in decision-making (Berridge and Kringelbach, 2013;
Kringelbach, 2005). Before and after decisions are made, the OFC en-
codes possible expected outcomes as well as their values. Following a
choice, the OFC helps evaluate the value of the outcome that was
chosen, relative to all other potential outcomes (Howard et al., 2015;
Lopatina et al., 2015; Mcdannald et al., 2014; Rich and Wallis, 2016)
including signaling regret for missed opportunities that would have
resulted in better outcomes (Camille et al., 2004; Coricelli et al., 2005;
Steiner and Redish, 2014). The OFC also plays a role in flexible deci-
sion-making, as it appears to be essential for reversal learning
(Hamilton and Brigman, 2015; Izquierdo et al., 2013). Damage to the
OFC has been associated with deficits in reversal learning, including the
classic Iowa Gambling Task (Bechara et al., 1998). Individuals with
reduced volume in this region may evaluate limited sets of outcomes
when planning behavior. Someone with intact OFC processing may be
more likely to evaluate a larger set of all potential outcomes, and be
better equipped to avoid illegal activity as a result.

Importantly, a combination of variables was most useful in

Table 5
Cox proportional hazards regressions with density SBM components and other covariates.

Predictor B Boot-
strapped
B

SE (B) Boot-strapped
SE (B)

p-Value 2-tailed/
1-tailed

Exp[B] CI (95%) for exp
[B]

Boot-strapped CI (95%) for
exp[B]

Proportion of full model
chi-square

Model 6
ICd 4 0.150 0.016 0.156 0.171 0.338/0.169 1.162 0.855–1.578 −0.362–0.395 0.92

ICd 16 0.017 0.016 0.177 0.193 0.925/0.463 1.017 0.719–1.438 −0.362–0.396 0.01
ICd 21 −0.403 −0.419 0.207 0.227 0.052/0.026 0.669 0.445–1.003 −0.831–0.059 3.78
ICd 24 0.215 0.229 0.153 0.175 0.160/0.080 1.239 0.919–1.673 −0.143–0.544 1.98
ICd 26 −0.082 −0.089 0.166 0.169 0.621/0.311 0.921 0.666–1.275 −0.407–0.256 0.24
Model 7

PCL-R F1 −0.039 −0.046 0.070 0.077 0.583/0.292 0.962 0.838–1.104 −0.183–0.119 0.30
PCL-R F2 −2.566 −2.986 1.025 1.163 0.012/0.006 0.077 0.010–0.573 −4.424–0.133 6.26
PCL-R Int. 0.168 0.1861 0.251 0.288 0.503 1.183 0.724–1.933 −0.415–0.714 0.45
Drug 0.185 0.225 0.455 0.558 0.685 1.203 0.493–2.934 −0.948–1.238 0.17
Alcohol 0.058 0.059 0.216 0.273 0.790 1.059 0.694–1.020 −0.479–0.591 0.07
Go/No Go FA −0.008 −0.008 0.014 0.015 0.578 0.992 0.965–1.02 −0.037–0.022 0.31
ACC −0.595 −0.687 0.195 0.252 0.002/0.001 0.992 0.376–0.808 −0.998 - -0.011 9.31
ICd 4 0.127 0.151 0.186 0.230 0.492/0.246 1.136 0.789–1.634 −0.348–0.555 0.47
ICd 16 −0.045 −0.046 0.186 0.244 0.807/0.403 0.956 0.664–1.376 −0.524–0.434 0.06
ICd 21 −0.630 −0.727 0.271 0.332 0.020/0.010 0.533 0.313–0.906 −1.184–0.117 5.41
ICd 24 0.192 0.216 0.170 0.218 0.260/0.130 1.211 0.868–1.691 −0.262–0.597 1.27
ICd 26 −0.054 −0.061 0.197 0.214 0.782/0.391 0.947 0.644–1.392 −0.468–0.372 0.08
Model 8

PCL-R F1 −0.052 −0.062 0.076 0.084 0.499/0.250 0.950 0.818–1.103 −0.207–0.124 0.46
PCL-R F2 −2.787 −3.311 1.058 1.251 0.008/0.004 0.062 0.008–0.490 −4.714–0.191 6.94
PCL-R Int 0.215 0.240 0.264 0.301 0.415 1.240 0.739–2.080 −0.400–0.780 0.66
Drug 0.299 0.363 0.468 0.597 0.523 1.348 0.538–3.378 −0.935–1.404 0.41
Alcohol 0.020 0.020 0.224 0.290 0.930 1.020 0.658–1.582 −0.548–0.587 0.01
Go/No Go FA −0.012 −0.013 0.014 −0.016 0.377 0.988 0.961–1.015 −0.042–0.020 0.78
ACC −0.695 −0.820 0.203 0.265 0.001/0.0005 0.499 0.336–0.743 −1.090–−0.049 11.75
Rel. age −0.055 −0.065 0.026 0.265 0.035/0.016 0.947 0.899–0.996 −1.090–−0.049 4.44
ICd 4 0.153 0.174 0.182 0.031 0.400/0.200 1.166 0.815–1.666 −0.105–0.015 0.71
ICd 16 −0.133 −0.151 0.195 0.237 0.496/0.248 0.876 0.598–1.283 −0.333–0.598 0.46
ICd 21 −0.782 −0.921 0.282 0.354 0.005/0.003 0.458 0.264–0.795 −0.629–0.399 7.71
ICd 24 0.016 0.011 0.197 0.240 0.937/0.469 1.016 0.690–1.495 −1.338–0.052 0.01
ICd 26 −0.006 −0.011 1.923 0.217 0.974/0.487 0.994 0.680–1.450 −0.451–0.491 0.00

Note. Results of Cox proportional hazards regression analyses examining the predictive effect neural age defined with density SBM components (Model 6), neural age
with covariates (Model 7), and neural age with covariates and chronological age (Model 8) on rearrest are presented. Model 6: Wald(5)= 16.97, p= .005, Likelihood
Ratio(5)= 17.3, p-value= .004, R2= 0.17, Score(logrank)(5)= 17.3, p-value= .004. Model 7: Wald(12)= 29.96, p= .003, Likelihood Ratio(12)= 32.88, p-
value= .001, R2= 0.324, Score(logrank)(12)= 32.05, p-value= .001. Model 8: Wald(13)= 32.2 p= .001, Likelihood Ratio(13)= 37.33, p-value= .0004,
R2= 0.359, Score(logrank)(13)= 36.4, p-value= .001. Bold variables are unique predictors within the model; one-tailed p values are provided for a priori pre-
dictors. Rel. Age is the participant's age when released from the correctional facility; PCL-R F1 and F2 refer to Factor 1 and Factor 2 scores from the Hare Psychopathy
Checklist – Revised (PCL-R); PCL-R Int. refers to the PCL-R interaction term, formed by multiplying PCL-R Factor 1 and Factor 2 scores together; Drug refers to the
participant's average use of the following drug classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens collected from the Scheduled Clinical
Interview for DSM-IV Axis I Disorders – Patient Version (SCID I/P) and the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS); Alcohol refers to the
participant's average use of alcohol collected from the SCID I/P and K-SADS; Go/No Go FA refers to the false alarm rate to NoGo stimuli; ACC refers to dorsal anterior
cingulate cortex mean activation (see Aharoni et al., 2013). ICd component numbers are listed for SBM density components included in the models.

K.A. Kiehl et al. NeuroImage: Clinical 19 (2018) 813–823

820



predicting rearrest in the present sample. Psychopathy scores and
anterior cingulate activity elicited from a Go/No Go task had previously
demonstrated utility in predicting rearrest (Aharoni et al., 2013; Steele
et al., 2015). By combining structural MRI data to these measures,
several additional neural regions were identified which uniquely con-
tribute to improving prediction models. Further, structural variation in

these regions was a better indicator of future reoffending than was
chronological age.

As with all studies, these findings carry a few limitations. First, our
neural model of age is uni-modal and could be improved upon. For
example, there are many possible brain measures that can be used as a
proxy for maturity/age (Brown et al., 2012; Cao et al., 2015; Dosenbach
et al., 2010; Khundrakpam, Tohka, Evans, and Group, 2015; Mwangi
et al., 2013). We recommend future work integrate multi-modal brain
measures (structure, function, connectivity, diffusion etc.) to produce a
more comprehensive “brain maturity index”. Second, from a cost-ben-
efit perspective, measuring chronological age is far simpler and less
expensive than conducting brain imaging. What is demonstrated here is
that neural measures which vary as a function of age are more precise
than chronological age in our prediction models. This underscores a
useful theoretical distinction between one's chronological age and one's
brain maturity, which progresses at different rates in individuals for a
variety of reasons. As chronological age ignores these differences, it is
likely to miss some important variance in helping determine future
outcomes. When the stakes are relatively low, these differences may not
be practically important. However, when the stakes are high vis-à-vis
predicting outcomes (e.g., civil commitment of dangerous sex offen-
ders), it may be valuable to determine these differences with the utmost
precision.

This is only an initial attempt of using neural age in models pre-
dicting antisocial outcomes and does not apply to all forensic popula-
tions. For example, it is well known that different forensic groups have
different risk variables. For example, inmates with traumatic brain in-
jury have different risk needs than inmates without such injuries and
individuals with mental health disorders have different risk needs than
other offenders. We believe separate models will be needed for these
different forensic populations.

We hypothesize that future models, including those with multi-
modal neural measures (e.g. structure, function, connectivity, diffusion)
and nonlinear terms, will account for more age-related variance and
thus be more sensitive to specific outcomes. Moreover, future work
could compute brain-psychopathy measures, brain-impulsivity mea-
sures, brain-IQ measures, to aid in the neuroprediction of rearrest.
Indeed, we included only a handful of known predictors of future

Fig. 3. Maps of the significant volume components (IC 14, left; IC 24, right) predicting rearrest.

Fig. 4. Map of the significant density component (IC 21) predicting rearrest.
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rearrest. It is possible that other measures, including genetics, other
demographic or psychological data, may emerge as significant pre-
dictors in future studies.

It is important to recognize that accuracy equally applies to the
outcome variables as it does the predictor variables. Here we have used
official arrest reports to derive our primary outcome variable (rearrest),
such reports may be biased by police strategies, geography, profiling,
etc. Future studies may consider using both self-report data on criminal
activities as well as arrest reports to assess whether one may be more
accurate than another.

4.1. Conclusions

This study demonstrated, for the first time, that structural brain
imaging measures corresponding to changes in age, are useful in the
prediction in future antisocial behavior. Significant predictors included
areas of the medial and anterior temporal cortex (e.g. amygdala and
temporal pole), and the orbitofrontal cortex. When compared directly,
models using brain-age measures performed better than those using
chronological age. Further, these measures incrementally improved on
previously developed models that incorporate a number of other im-
portant factors, including psychopathic traits, drug and alcohol use, and
functional neuroimaging data corresponding to performance on a be-
havioral inhibition task (Aharoni et al., 2013). As a whole, this study
represents an incremental step in demonstrating the utility of brain
measures for their practical predictive value; however, these findings
should not be considered apart from a number of important limitations
and ethical considerations. Limitations include the cost-benefit ratio for
general implementation of these techniques, and the likelihood for
improvement on these techniques with multimodal imaging data.
Ethical considerations abound in using brain-derived information to
make decisions about individuals' freedom, based on improved, but
still-imperfect prediction models. Further, it demands expanded con-
sideration of our notions of responsibility and culpability vis-à-vis be-
havioral variability attributable to physiological indices of maturity.
We hope this work spurs on additional research for improving on these
techniques and underscores the growing need for informed discourse on
the ethical considerations that arise from its demonstrated utility.
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