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Ventromedial Prefrontal Cortex Damage Is Associated with
Decreased Ventral Striatum Volume and Response to
Reward
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The ventral striatum and ventromedial prefrontal cortex (vmPFC) are two central nodes of the “reward circuit” of the brain. Human
neuroimaging studies have demonstrated coincident activation and functional connectivity between these brain regions, and animal
studies have demonstrated that the vmPFC modulates ventral striatum activity. However, there have been no comparable data in humans
to address whether the vmPFC may be critical for the reward-related response properties of the ventral striatum. In this study, we used
fMRI in five neurosurgical patients with focal vmPFC lesions to test the hypothesis that the vmPFC is necessary for enhancing ventral
striatum responses to the anticipation of reward. In support of this hypothesis, we found that, compared with age- and gender-matched
neurologically healthy subjects, the vmPFC-lesioned patients had reduced ventral striatal activity during the anticipation of reward.
Furthermore, we observed that the vmPFC-lesioned patients had decreased volumes of the accumbens subregion of the ventral striatum.
Together, these functional and structural neuroimaging data provide novel evidence for a critical role for the vmPFC in contributing to
reward-related activity of the ventral striatum. These results offer new insight into the functional and structural interactions between key
components of the brain circuitry underlying human affective function and decision-making.
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Introduction
The brain’s “reward circuit”—the network of regions encoding
various aspects of pleasure, motivation, and value—is a critical
biological substrate underlying human emotion, decision-

making, and social behavior. Two central nodes of the reward
circuit are the ventral striatum/nucleus accumbens and ventro-
medial prefrontal cortex (vmPFC). The ventral striatum has been
particularly associated with the anticipation or prediction of re-
ward, whereas the vmPFC has been linked to reward outcome
and subjective value (Knutson et al., 2003; Grabenhorst and
Rolls, 2011; Liu et al., 2011; Levy and Glimcher, 2012). Damage to
the vmPFC in humans disrupts value-based decision-making and
social function (Bechara et al., 1997; Camille et al., 2004, 2011;
Koenigs and Tranel, 2007; Koenigs et al., 2007), and dysfunction
in this circuit is observed across a broad range of psychopathol-
ogy (Kalivas and Volkow, 2005; Tremblay et al., 2005; Epstein et
al., 2006; Scheres et al., 2007; Harrison et al., 2009; Plichta et al.,
2009; Waltz et al., 2009; Koob and Volkow, 2010; Scott-Van Zee-
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Significance Statement

Maladaptive decision-making is a common problem across multiple mental health disorders. Developing new pathophysiologi-
cally based strategies for diagnosis and treatment thus requires a better understanding of the brain circuits responsible for
adaptive decision-making and related psychological subprocesses (e.g., reward valuation, anticipation, and motivation). Animal
studies provide evidence that these functions are mediated through direct interactions between two key nodes of a posited “reward
circuit,” the ventral striatum and the ventromedial prefrontal cortex (vmPFC). For the first time in humans, we demonstrate that
damage to the vmPFC results in decreased ventral striatum activity during reward anticipation. These data provide unique
evidence on the causal mechanisms by which the vmPFC and ventral striatum interact during the anticipation of rewards.
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land et al., 2010; Figee et al., 2011; Jung et
al., 2011; Dichter et al., 2012; Morris et al.,
2012; Nielsen et al., 2012; Robinson et al.,
2012).

Despite the importance of this brain
circuit for mental health and adaptive
decision-making, the neural interactions
between the vmPFC and ventral striatum
are not fully understood. Rodent studies
have shown that the vmPFC has direct
glutamatergic projections to the ventral
striatum (Sesack et al., 1989; Voorn et al.,
2004; Gabbott et al., 2005) and that inac-
tivation of the vmPFC alters neuronal ac-
tivity in the ventral striatum (Ghazizadeh
et al., 2012). These studies indicate that
the vmPFC may play a role in modulating
ventral striatum activity. Human func-
tional imaging studies have yielded addi-
tional correlational support for this idea;
the vmPFC and ventral striatum exhibit
strong functional connectivity at rest (Di
Martino et al., 2008; Cauda et al., 2011;
Choi et al., 2012) and are often coacti-
vated during reward processing tasks
(Cauda et al., 2011). However, there is not yet evidence that the
vmPFC actually modulates ventral striatum activity in humans.
In other words, whereas animal studies have demonstrated that
the vmPFC plays a causal role in modulating ventral striatum
activity, there are no comparable data in humans to address
whether the vmPFC may be critical for the reward-related re-
sponse properties of ventral striatum.

In this study, we use fMRI in neurosurgical patients with focal
vmPFC lesions to test the hypothesis that the vmPFC is necessary
for enhancing ventral striatum responses to the anticipation of
reward.

Materials and Methods
Participants. The target lesion group consisted of five adult neurosurgical
patients (n � 3 males; n � 2 females) with extensive bilateral parenchy-
mal damage, primarily confined to the vmPFC, defined as the medial
one-third of the orbital surface and the ventral one-third of the medial
surface of the PFC bilaterally (Fig. 1). Each of the five patients underwent
surgical resection of a large anterior cranial fossa meningioma via crani-
otomy. Initial clinical presentations included subtle or obvious person-
ality changes over several months preceding surgery. On postsurgical
MRI, although vasogenic edema mostly resolved, there were persistent
T2-weighted signal changes consistent with gliosis and degeneration of
white matter fibers in the vmPFC bilaterally. All experimental procedures
were conducted �3 months after surgery, when the expected recovery
was complete. At the time of testing (range of time elapsed since surgery,
32–75 months), all patients had focal, stable MRI signal changes and
resection cavities and were free of dementia and substance abuse. Seven-
teen healthy adults (n � 10 males; n � 7 females) with no history of brain
injury, neurological or psychiatric illness, or current use of psychoactive
medication were recruited as a normal comparison (NC) group. Demo-
graphic and neuropsychological data for the vmPFC and NC groups are
summarized in Table 1.

fMRI task. To assess ventral striatum activity, we used an fMRI task
involving the anticipation of monetary reward (Monetary Incentive De-
lay task), which has been used extensively to examine reward-related
neural responses in healthy and patient populations (Knutson et al.,
2008; Ströhle et al., 2008; Beck et al., 2009; Khemiri et al., 2012; Nielsen et
al., 2012; Stoy et al., 2012; Gleichgerrcht and Young, 2013). Previous
fMRI research with this task has reliably demonstrated ventral striatum

activity in response to cues indicating the potential gain of money
(Khemiri et al., 2012; Gleichgerrcht and Young, 2013). Hence, this task
provides a well established fMRI measure of ventral striatum response to
reward. Each trial consists of three periods. During the initial 2 s cue
period, the subject views one of six different shapes (with circles indicat-
ing potential gains and squares indicating potential losses) displaying the
amount of money that could be gained or lost on that trial (�$0.00,
�$1.00, �$5.00, �$0.00, �$1.00, �$5.00), followed by a 2 s fixation
cross display (anticipation phase). During the following reaction-time
task period (performance phase), the subject presses a button in response
to a visual prompt (a solid white triangle) as quickly as possible. If the
subject responds quickly enough while the prompt is displayed, the sub-
ject either gains money or avoids losing money on that trial. The third
task period (outcome phase) indicates the monetary result based on the
response (e.g., �$1.00 for a successful response during a gain trial or
�$5.00 for an unsuccessful response during a loss trial) for 2 s. The task
difficulty for individual subjects was manipulated based on performance
across the task, such that each subject successfully hit the target on �66%
of the trials for each cue type. The entire task consisted of one functional
run of �20 min, consisting of 90 8-s trials (15 trials for each of the six cue
types) presented in pseudorandom order, followed by an intertrial inter-
val of 2, 4, or 6 s.

Before scanning, subjects were informed of all cue-outcome contin-
gencies and completed a practice task consisting of 15 trials to ensure task
comprehension and accurate reaction time calibration. Subjects com-
pleted the practice task twice outside the scanner and once inside the
scanner during T1 acquisition, before the start of the full-length task. At
the start of the scanning session, subjects were told that they would
receive additional payment corresponding to their cumulative earnings
on the full-length reward task.

After the scan, subjects were brought to a separate room and asked to
rate their overall arousal and valence for each cue type using a scale
ranging from 1 (arousal, “not at all aroused”; valence, “very negative”) to
7 (arousal, “highly aroused”; valence, “very positive”).

MRI data acquisition. All structural and functional MRI data were
acquired using a 3.0 T GE Discovery MR750 scanner equipped with an
eight-channel radio-frequency head coil array (GE Healthcare). High-
resolution T1-weighted anatomical images were acquired using an
inversion-recovery spoiled gradient recalled acquisition in steady state
(spoiled gradient-recalled acquisition in a steady state) sequence (TR, 8.2
ms; TE, 3.2 ms; � � 12°; FOV, 256 � 256 mm; matrix, 256 � 256;
in-plane resolution, 1 � 1 mm 2; slice thickness, 1 mm; 1024 axial slices).

Figure 1. Lesion overlap of vmPFC-lesioned patients. Color indicates the number of overlapping lesions at each voxel. For axial
and coronal views, the left side of the brain is displayed on the right.
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To facilitate lesion segmentation, we collected a separate T2-weighted
fluid-attenuated inversion recovery scan (FLAIR; TR, 8650 ms; TE, 136
ms; � � 0°; FOV, 220 � 220 mm 2; matrix, 512 � 512; in-plane resolu-
tion, 0.43 � 0.43 mm 2; slice thickness, 5 mm; gap, 1 mm; 25 axial slices).

Baseline resting cerebral blood flow (CBF) was estimated using a 3D
fast spin echo spiral sequence with pseudocontinuous arterial spin label-
ing (pcASL; Dai et al., 2008; Xu et al., 2010; Okonkwo et al., 2014) and
background suppression for quantitative perfusion measurements (TR,
4653 ms; TE, 10.5 ms; post-labeling delay, 1525 ms; labeling duration,
1450 ms; eight interleaved spiral arms with 512 samples at 62.5 kHz
bandwidth and 38.4-mm-thick slices; number of excitations, 3; scan du-
ration, 4.5 min).

Whole-brain functional scans were acquired using a T2*-weighted
gradient-echo echoplanar imaging (EPI) sequence (TR, 2000 ms; TE, 22
ms; � � 79°; FOV, 224 � 224 mm 2; matrix, 64 � 64; in-plane resolution,
3.5 � 3.5 mm 2; slice thickness, 3 mm; gap, 0.5 mm; 38 interleaved axial
oblique slices). Field maps were acquired using two separate acquisitions
(TR, 600 ms; TE1, 7 ms; TE2, 10 ms; � � 60°; FOV, 240 � 240 mm 2;
matrix, 256 � 128; slice thickness, 4 mm; 33 axial oblique slices). Resting-
state functional images were collected while subjects lay still and awake,
passively viewing a fixation cross for 5 min. Scans were acquired in the
following order: pcASL, field map, rest, T1, task, T2 FLAIR.

Lesion segmentation and image normalization. Individual vmPFC le-
sions were visually identified and manually segmented on the T1-
weighted images. Lesion boundaries were drawn to include areas with
gross tissue damage or abnormal signal characteristics on T1 or T2 FLAIR
images. T1-weighted images were skull stripped, rigidly coregistered with
a functional volume from each subject, and then diffeomorphically
aligned to the Montreal Neurological Institute (MNI) coordinate system
using a Symmetric Normalization algorithm (Avants and Gee, 2004)
with constrained cost-function masking to prevent warping of tissue
within the lesion mask (Brett et al., 2001). We created the lesion overlap
map (Fig. 1) by computing the sum of aligned binary lesion masks for all
five vmPFC patients. Alignment parameters computed during this step
were used in the subsequent normalization of all anatomical and func-
tional data to MNI space.

fMRI task preprocessing and analysis. Data analysis was conducted us-
ing AFNI (Automated Functional Neuro-Imaging; Cox, 1996) and FSL
(Functional MRI of the Brain Software Library; http://www.fmrib.ox.ac.
uk/fsl) software. The task run was slice time corrected, field map cor-
rected (Jezzard and Clare, 1999), motion corrected, smoothed with a 4
mm full-width half-maximum (FWHM) Gaussian kernel, scaled to per-
centage signal change (PSC), aligned to MNI space, and resampled to 3
mm 3 isotropic resolution. Anticipatory activity was modeled using a
duration-modulated boxcar regressor, beginning at cue onset and span-
ning the 4 s anticipation phase (cue and fixation cross) before the pre-
sentation of the target. All six cue regressors were included in a general
linear model (GLM) with six additional regressors for each outcome
(gains of $0, $1, or $5; losses of $0, $1, or $5). The GLM also included
several regressors of no interest: six motion covariates from rigid-body
alignment (Johnstone et al., 2006) and a fourth-order polynomial to
model baseline and slow signal drift. To avoid potential confounds in-
troduced by subject motion, volumes in which �10% of voxels were time
series outliers were censored before conducting the GLM.

One vmPFC-lesioned patient was rescanned because of input device
malfunction during the first scan. Three NC subjects (n � 1 male; n � 2
females) were excluded from task-based analyses because of excessive
head motion (�2 mm; Power et al., 2012), for a total sample size of 14 NC

subjects (n � 9 males; n � 5 females). There were no group differences in
the percentage of censored volumes (W � 60.5, p � 0.84) or in mean
framewise displacement (NC, 0.06 � 0.02 mm; vmPFC, 0.07 � 0.03 mm;
W � 134.0, p � 0.31). Resulting whole-brain maps of voxelwise � values
for sustained BOLD responses, in MNI space at 3 mm 3 isotropic resolu-
tion, were used for second-level analyses.

To identify brain regions responsive to the anticipation of monetary
gain, we first performed a whole-brain, two-tailed paired-sample t test
between responses to gain cues (collapsed across magnitude) and the
neutral gain cue (�$0) using only the 14 NC subjects (Chen et al., 2013).
All statistical maps were familywise error (FWE) corrected for multiple
comparisons across the whole brain at the cluster level ( pFWE 	 0.05),
using a height threshold of p 	 0.001 (Forman et al., 1995; Carp, 2012).
A corrected pFWE 	 0.05 was achieved using a cluster extent threshold of
20 voxels (540 mm 3), calculated using Monte Carlo simulations with
3dClustSim (December 2015 version) in AFNI.

Because of the small sample size of patients with vmPFC lesions, we
used nonparametric Mann–Whitney U tests to evaluate our main a priori
hypothesis regarding activity of the ventral striatum and behavioral dif-
ferences between groups (percentage of hits by condition, postscan va-
lence and arousal ratings by condition, target duration by condition, and
cumulative money earned from the task). Specifically, we focused our
between-group analyses on PSC estimates extracted from functionally
derived right and left ventral striatum ROIs (ventral striatum clusters
from the gain � neutral contrast in the NC group). We used functional
ROIs to ensure that group comparisons were conducted within function-
ally relevant regions within the ventral striatum (i.e., regions that re-
sponded strongly in anticipation of potential gains in healthy subjects;
Poldrack, 2007). However, to confirm that group comparisons within
functionally derived ventral striatum ROIs reflected differences in ven-
tral striatum activity, we conducted additional between-group tests using
values extracted from ROIs in the right and left ventral striatum (number
of voxels in masks, nright � 99, nleft � 107), created from subregions in a
striatal parcellation atlas derived from functional connectivity to 17 dis-
tinct cortical networks in 1000 healthy adults (Choi et al., 2012). The
chosen subregions, which correspond to regions 10 and 17 in the 17-
network parcellation map (available at http://www.freesurfer.net/fswiki/
StriatumParcellation_Choi 2012), demonstrated functional connectivity
in the healthy adults to cortical areas corresponding to the region of
damage in our vmPFC-lesioned patient sample.

To test the specificity of observed effects to the ventral striatum, we
conducted follow-up analyses on PSC values extracted from the remain-
ing functionally derived regions outside the ventral striatum. All tests
were considered significant at p 	 0.05.

Volumetric analysis. The averaged T1-weighted images were processed
using FreeSurfer (Forman et al., 1995; Fischl, 2012). The FreeSurfer tissue
segmentation includes volume measurements (in cubic millimeters) for
four striatal subregions in each hemisphere. We used nonparametric
Mann–Whitney U tests to calculate group differences in volumes of the
following striatal subregions: left and right putamen, left and right cau-
date, left and right accumbens, and left and right pallidum. We also
calculated group differences in volumes of two additional subcortical
limbic structures—the amygdala and hippocampus—to further examine
specificity. All regional volumes were corrected for estimated intracranial
volume (Sanfilipo et al., 2004).

Cerebral perfusion analysis. Quantitative CBF images from pcASL were
rigidly coregistered with a T2*-weighted EPI volume from the task scan
and normalized to MNI space. Normalized CBF volumes were scaled to

Table 1. Subject characteristics

Age (years) Sex Edu IQ BIS total BAS total BAS D BAS FS BAS RR Pos Aff Neg Aff BDI-II STAI-T

vmPFC (n � 5) 59.8 (5.2) 3 males/2 females 15.6 (3.6) 105.2 (11.2) 16.4 (1.5) 38.6 (4.2) 11.0 (1.1) 11.6 (1.1) 16.0 (1.4) 37.6 (8.1) 16.2 (7.8) 6.2 (3.3) 33.4 (8.4)
NC (n � 14) 62.6 (3.9) 9 males/5 females 17.1 (2.4) 113.0 (6.0) 18.9 (3.5) 38.1 (4.8) 10.6 (2.1) 11.4 (1.9) 16.1 (2.0) 39.9 (7.2) 13.9 (4.2) 3.7 (3.0) 29.6 (5.3)
p (vmPFC vs NC) 0.39 0.86 0.44 0.13 0.11 0.82 0.75 0.96 0.96 0.72 0.62 0.22 0.34

Means are presented with SDs in parentheses. Edu, Years of education; IQ, intelligence quotient estimated by the Wide Range Achievement Test 4, Blue Reading subtest (Wilkinson and Robertson, 2006); BIS/BAS, scores from the Behavioral
Inhibition System/Behavioral Approach System, with subtests for drive (D), fun seeking (FS), and reward responsiveness (RR) (Carver and White, 1994); Pos/Neg Aff, scores from the Positive and Negative Affect Schedule (Watson et al., 1988);
BDI-II, Beck Depression Inventory-II (Beck et al., 1996); STAI-T, trait version of the Spielberger State Trait Anxiety Inventory (Spielberger et al., 1983). A recently published study from our laboratory (Pujara et al., 2015) demonstrates abnormal
value-based decision-making in the same sample of vmPFC-lesioned patients who participated in the current study.
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whole-brain CBF (after masking out the lesion in vmPFC patients) and
smoothed with a 6 mm FWHM Gaussian kernel. To rule out differences
in baseline cerebral perfusion, we examined group differences in mean
whole-brain CBF and differences in scaled CBF for all functionally de-
fined ROIs using nonparametric Mann–Whitney U tests.

Results
Behavioral data
Groups did not significantly differ with respect to task perfor-
mance (percentage of hits by condition, postscan valence and
arousal ratings by condition, target duration by condition, and
cumulative money earned from the task; all comparisons p �
0.19). These behavioral data for the vmPFC and NC groups are
summarized in Table 2.

fMRI task data
Relative to the neutral cue, gain anticipation elicited robust bilat-
eral striatum activity in the NC subjects (Fig. 2; Table 3). To
examine group differences in striatum activity, we extracted PSC
estimates from these functionally derived right and left striatum
ROIs. In support of our main hypothesis, patients with vmPFC
lesions exhibited significantly less activity in the right striatum
(W � 64.0, p � 0.005) and left striatum (W � 59.0, p � 0.03)
during gain anticipation than did NC subjects (Fig. 2). This effect
was present for the high gain $5 cue � $0 cue contrast (right
striatum, W � 64.0, p � 0.005; left striatum, W � 60.0, p � 0.02)
but not the low gain $1 cue � $0 cue contrast (right striatum,
W � 54.0, p � 0.09; left striatum, W � 47.0, p � 0.30). Consistent
with the results based on functionally derived ROIs, we observed
a significant group difference for the $5 cue � $0 cue contrast for
the a priori right ventral striatum ROI (W � 28.0, p � 0.04) and
a trend-level group difference for the $5 cue � $0 cue contrast for
the a priori left ventral striatum ROI (W � 30.0, p � 0.07).

To test the anatomical specificity of group differences in ac-
tivity related to gain anticipation (Table 3), we conducted
follow-up analyses in the three remaining functionally derived

ROIs from the gain � neutral cue contrast [e.g., left paracentral
lobule/medial frontal gyrus (MFG), left inferior parietal lobule
(IPL), and right caudate] and found similar group differences
(left MFG, W � 68.0, p � 0.0007; left IPL, W � 64.0, p � 0.005;
right caudate, W � 63.0, p � 0.007).

To ensure that the hypothesized group differences in the func-
tionally defined striatum regions were not attributable to baseline
differences in perfusion after vmPFC damage, we estimated CBF
using pcASL before the functional scan in all subjects. There were
no significant differences between groups for whole-brain CBF
(W � 26, p � 0.44) or for either of the functionally defined striatum
ROIs (right, W � 50.0, p � 0.19; left, W � 41.0, p � 0.62).

Volumetric data
Compared with the NC group, the vmPFC group had significantly
smaller volumes of the accumbens subregion of the left ventral stria-
tum (W � 57.0, p � 0.04) and a trend-level difference for the right
accumbens subregion of the ventral striatum (W � 54, p � 0.09; Fig.
3). There were no significant group differences for any other region
of the striatum (right putamen, W � 33.0, p � 0.49; left putamen,
W � 38.0, p � 0.76; right caudate, W � 29.0, p � 0.32; left caudate,
W � 28.0, p � 0.28; right pallidum, W � 34.0, p � 0.54; left palli-
dum, W � 46.0, p � 0.82), amygdala (right, W � 44.0, p � 0.93; left,
W � 35.0, p � 0.59), or hippocampus (right, W � 52, p � 0.49; left,
W � 45.0, p � 0.88; Table 4).

Discussion
Through a novel application of fMRI in patients with bilateral
vmPFC damage, we have demonstrated a critical role for the
vmPFC in modulating the reward-related activity and structure
of the ventral striatum. Specifically, we found that vmPFC lesions
were associated with decreased ventral striatal activity during the
anticipation of reward and decreased volumes of the accumbens
subregion of the ventral striatum. These results are germane to
neural circuitry models of reward processing and mental illness.

First, with respect to neural circuitry models of reward pro-
cessing, the study results fill an empirical gap between previous
animal and human research findings. Human fMRI studies have
consistently shown that the vmPFC and ventral striatum exhibit
coincident activity (Di Martino et al., 2008; Cauda et al., 2011;
Choi et al., 2012). However, a fundamental limitation of this
correlational approach is that it does not distinguish between
cause and consequence within the network of observed activity.
In other words, is the observed coactivation of the vmPFC and
ventral striatum during reward processing in these studies attrib-
utable to vmPFC activity modulating ventral striatum activity or
vice versa? Or are activity changes in these areas just parallel,
coincidental downstream effects triggered by activity elsewhere
in the brain? Animal research suggests a causal effect of vmPFC
activity on ventral striatum activity. Rodent studies have shown
that the vmPFC has direct glutamatergic projections to the ven-
tral striatum (Sesack et al., 1989; Voorn et al., 2004; Gabbott et al.,
2005) and that inactivation of the vmPFC alters neuronal activity
in the ventral striatum (Ghazizadeh et al., 2012). Lesioning or
inactivating both the vmPFC and ventral striatum/accumbens
disrupts behavioral responding during reward learning and reac-
tion time tasks, indicating that adaptive decision-making de-
pends on concurrent activation of both regions (Christakou et al.,
2004; Peters et al., 2008; Bossert et al., 2012; St Onge et al., 2012;
Richard and Berridge, 2013; Smith and Graybiel, 2013; Feja and
Koch, 2015). The present study yields the first human evidence
suggesting that the vmPFC does in fact have a causal influence on
modulating ventral striatum activity, in that deprivation of vmPFC

Table 2. Behavioral data

Gain/loss

vmPFC NC

pMean SD Mean SD

% Hits �$0 65.3 5.6 62.1 5.7 0.34
�$1 53.3 19.4 59.0 10.5 0.92
�$5 68.0 7.3 65.6 7.1 0.78
�$0 62.3 7.6 61.5 10.2 0.99
�$1 66.7 4.7 57.9 12.3 0.21
�$5 64.0 3.7 60.5 11.0 0.70

Arousal ratings �$0 2.6 1.5 2.8 1.4 0.85
�$1 2.8 1.6 3.3 1.5 0.63
�$5 3.2 2.2 4.5 2.4 0.29
�$0 3.0 1.6 2.9 1.3 0.92
�$1 4.4 1.3 4.4 1.3 0.85
�$5 6.0 0.7 6.0 1.2 0.78

Valence ratings �$0 3.4 1.3 4.2 0.9 0.34
�$1 3.8 0.4 3.9 0.8 0.99
�$5 3.6 2.4 2.7 1.5 0.50
�$0 3.6 1.1 4.2 0.4 0.39
�$1 4.6 1.1 4.9 0.6 0.63
�$5 6.0 1.0 5.8 1.5 0.99

Target duration (ms) �$0 367 61 352 77 0.69
�$1 345 77 333 83 0.56
�$5 350 85 328 71 0.89
�$0 352 71 354 56 0.96
�$1 378 67 336 92 0.19
�$5 334 82 322 84 0.82

Payment $27.00 $8.06 $22.15 $12.49 0.50

Note that, because of a computer malfunction, the behavioral data for one NC subject was not available.
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input (via focal lesion) results in reduced ventral striatum activity
during the anticipation of reward. This finding accords with human
lesion studies that demonstrate impairments in value-based
decision-making after vmPFC damage (Zald and Andreotti, 2010;
Fellows, 2011). In the context of these behavioral effects, our fMRI
data suggest a critical role for the vmPFC in modulating anticipatory
ventral striatal responses to potential rewards.

The present findings may also help inform neural circuitry mod-
els of mental illness. Clinical neuroimaging studies have consistently
identified abnormalities in reward circuit function and decision-
making across a range of psychiatric disorders, including major de-
pression (Tremblay et al., 2005; Epstein et al., 2006; Robinson et al.,
2012), schizophrenia (Waltz et al., 2009; Morris et al., 2012; Nielsen
et al., 2012), substance use disorders (Kalivas and Volkow, 2005;
Koob and Volkow, 2010), attention-deficit hyperactivity disorder
(Scheres et al., 2007; Plichta et al., 2009), obsessive-compulsive dis-

order (Harrison et al., 2009; Figee et al., 2011; Jung et al., 2011), and
autism (Scott-Van Zeeland et al., 2010; Dichter et al., 2012). Clarify-
ing the functional architecture of this circuit is thus an important
step in advancing the neuropathophysiological understanding of
mental illness. The present results suggest that vmPFC dysfunction
may contribute to psychopathology by disrupting ventral striatal
activity.

In addition to the diminished reward-related activity in the ven-
tral striatum, we also observed reduced ventral striatum volumes in
the vmPFC-lesioned patients. Importantly, this volume reduction
was specific to the accumbens subregion of the striatum; the volumes
of all other striatal subregions (caudate, putamen, pallidum) and
other limbic subregions (amygdala, hippocampus) did not signifi-
cantly differ between groups. The specificity of this finding mirrors
known anatomical connections between the vmPFC and striatum,
which share a particularly high density of reciprocal axonal connec-
tions (Haber and Knutson, 2010; Rigoard et al., 2011). It is possible
that the ventral striatum volume reduction among vmPFC-lesioned
patients is attributable to diminished input from vmPFC and/or
retrograde degeneration from damaged axonal connections. Re-
gardless, the complementary fMRI and volumetric findings under-
score the tight link between structure and function in this brain
circuit.

Although our study hypothesis focused on the ventral striatum,
we also observed activity related to gain anticipation in the lateral
parietal cortex. This finding accords with electrophysiological stud-
ies of nonhuman primates, which have consistently demonstrated
reward-related neuronal activity in the lateral parietal cortex during
decision-making and reinforcement learning (Platt and Glimcher,

Figure 2. a, Striatal regions with greater activation to gain, relative to neutral, cues in 14 NC subjects. Significant striatum clusters from the gain � neutral contrast at p 	 0.005 uncorrected in
orange and p 	 0.001 in yellow ( pFWE 	 0.05) for display. Slice coordinates (in millimeters) are presented in MNI template space. b, Plots depict the distribution of individual PSC values for
vmPFC-lesioned patients (red circles) and NC subjects (black circles) in response to gain (�5,�1) minus neutral (�0) cues within each striatum cluster at p	0.001 uncorrected, pFWE 	0.05. Light
gray horizontal lines on the plots represent the mean and the first and third quartiles of PSC values for each group.

Table 3. Brain regions sensitive to anticipatory cues in the NC group

Contrast Structure

Cluster Peak voxel

Size pFWE T x y z

Gain � neutral L Striatum 26 	0.001 5.40 �15.5 �9.5 �3.5
R Striatum #1 34 	0.001 5.92 �20.5 �9.5 �5.5
R Striatum #2 29 	0.001 6.76 �17.5 �6.5 �9.5
L MFG 218 	0.001 7.21 �6.5 �20.5 �66.5
L IPL 192 	0.001 7.31 �27.5 �44.5 �39.5
R Caudate 29 	0.001 6.76 �17.5 �6.5 �9.5

Loss � neutral — — — — — — —

Cluster size in number of voxels (3 � 3 � 3 mm 3). Corrected p thresholds indicate minimum FWE-corrected p value
for each cluster. Peak voxel coordinates (millimeters) are presented in MNI space. BA, Brodmann area; L, left; R, right.
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1999; Dorris and Glimcher, 2004; Sugrue et al., 2004; Peck et al.,
2009; Seo et al., 2009; Louie and Glimcher, 2010). Our finding that
reward-related activity in the parietal cortex was significantly re-
duced in the vmPFC-lesioned patients suggests that vmPFC damage
may attenuate reward-related signals outside the striatum.

One limitation of the present study is the inability to deter-
mine whether the vmPFC was engaged in response to reward cues
in normal subjects. Unfortunately, the area of vmPFC damage in
our patient sample corresponds almost exactly to the area of
maximal fMRI signal dropout attributable to magnetic field in-
homogeneities. In addition, the lesions almost certainly involved
damage to white matter pathways in and around the vmPFC.

Hence, we are unable to determine whether vmPFC damage dis-
rupted local processing during the task, or perhaps impaired
communication between the striatum and other cortical areas via
damage to underlying white matter. To account for the absence
of a lesion control group, we assessed baseline cerebral perfusion.
Because ASL data indicated no gross alterations of perfusion in
the vmPFC patients (either globally or in ventral striatum), the
observed group differences in task activation cannot be readily
explained by group differences in cerebral perfusion.

Another limitation of this study is that the Monetary Incentive
Delay (MID) fMRI paradigm does not provide a sensitive behav-
ioral measure of reward processing. To more conclusively deter-
mine the behavioral relevance of the observed abnormalities in
ventral striatum structure and function, future studies could ex-
amine the link between striatal neurobiology and established be-
havioral measures of reward learning or value-based decision-
making. In addition, it will be important to determine whether
vmPFC damage is associated with less improvement in behav-
ioral performance based on incentives relative to neurologically
healthy subjects. One early study reported a “small but reliable
tendency” for reaction time decreasing with higher reward mag-
nitude on a task of 250 rewarded trials (Stillings et al., 1968).
Another study reported an effect of reward magnitude on reac-
tion time on a task that included a total of 300 trials (Park et al.,
2012). Our MID task only included 30 rewarded trials, because it
was tailored specifically for fMRI data collection to address the
hypothesis regarding ventral striatum activation. There are a few
possible ways to assess behavioral differences between groups in
future studies. One would be to use a longer version of the MID
task outside of the scanner with a greater number of rewarded
trials. Another would be to use a delay discounting task, which

Figure 3. a, Accumbens area (ventral striatum) subregions of a representative subject. b, Plots depict the distribution of individual volume values (in cubic millimeters) for vmPFC-lesioned
patients (red circles) and NC subjects (black circles) for each accumbens area region of interest, scaled to total estimated intracranial volume. Light gray horizontal lines on the plots represent the
mean and the first and third quartiles of volume values for each group.

Table 4. Volumetric data

Region

NC vmPFC

W pMean SD Mean SD

Striatum
L NAc 568.8 126.2 481.14 129.8 57.0 0.04
R NAc 658.5 121.4 549.9 184.1 54.0 0.09
L caudate 3397.1 573.4 3773.8 381.4 28.0 0.28
R caudate 3645.2 679.7 4059.6 641.7 29.0 0.32
L putamen 5248.1 724.0 5557.4 620.6 38.0 0.76
R putamen 5052.2 651.1 5427.2 502.9 33.0 0.49
L pallidum 1319.2 182.3 1407.9 260.6 46.0 0.82
R pallidum 1447.5 257.6 1527.9 190.0 34.0 0.54

Amygdala
L amygdala 1527.7 260.2 1634.6 221.4 35.0 0.59
R amygdala 1680.1 272.0 1753.2 417.5 44.0 0.93

Hippocampus
L hippocampus 3943.8 296.9 4199.2 486.8 45.0 0.88
R hippocampus 4138.6 324.3 4314.5 453.1 52.0 0.49

Total estimated ICV 1507627.1 146862.7 1587332.61 145817.2 23.0 0.30

Significant group differences are in bold. L, Left; R, right; NAc, nucleus accumbens; ICV, intracranial volume.
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has been included as a behavioral test outside the scanner to
complement the MID task in the scanner (Luo et al., 2009; Ben-
ningfield et al., 2014). A recent study examined incentivization by
reward in vmPFC-lesioned patients using a speeded saccade task
with an auditory incentive cue (Manohar and Husain, 2016).
Consistent with our fMRI findings, vmPFC damage resulted in
reduced saccadic velocity and autonomic pupil responses for
rewards.

One feature of this study that warrants consideration is the lim-
ited sample size of vmPFC-lesioned patients (n � 5). For this study,
we used extremely stringent selection criteria for our target group;
lesions had to involve substantial portions of vmPFC bilaterally but
could not extend significantly outside vmPFC. Furthermore, be-
cause the study involved fMRI, we could not include patients with
metallic implants, such as aneurysm clips. To meet these criteria, we
selected a group of patients who had all undergone surgical resection
of large orbital meningiomas. So, although our sample size may be
small by conventional vmPFC-lesioned patient standards (which
typically feature 5–12 vmPFC-lesioned patients), it is unique with
respect to the homogeneity of etiology, uniformity, and selectivity of
bilateral vmPFC lesions and compatibility with fMRI.

In summary, these findings indicate a role for the vmPFC in
contributing to reward-related activity of the ventral striatum.
Our results offer new insight into the functional and structural
interactions between the vmPFC and ventral striatum, two key
components of the brain circuitry underlying human affective
function and decision-making.
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