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Abstract
Dysfunction in the prefrontal cortex, amygdala, and hippocampus is believed to underlie the

development of much psychopathology. However, to date only limited longitudinal data relate

early behavior with neural structure later in life. Our objective was to examine the relationship

of early life externalizing behavior with adolescent brain structure. We report here the first lon-

gitudinal study linking externalizing behavior during preschool to brain structure during ado-

lescence. We examined the relationship of preschool externalizing behavior with amygdala,

hippocampus, and prefrontal cortex volumes at age 15 years in a community sample of 76 ad-

olescents followed longitudinally since their mothers’ pregnancy. A significant gender by ex-

ternalizing behavior interaction revealed that males—but not females—with greater early

childhood externalizing behavior had smaller amygdala volumes at adolescence (t = 2.33,

p = .023). No significant results were found for the hippocampus or the prefrontal cortex.

Greater early externalizing behavior also related to smaller volume of a cluster including the

angular gyrus and tempoparietal junction across genders. Results were not attributable to the

impact of preschool anxiety, preschool maternal stress, school-age internalizing or externaliz-

ing behaviors, or adolescent substance use. These findings demonstrate a novel, gender-

specific relationship between early-childhood externalizing behavior and adolescent amygda-

la volume, as well as a cross-gender result for the angular gyrus and tempoparietal junction.

Introduction
The amygdala, hippocampus, and prefrontal cortex (PFC), especially ventromedial and orbito-
frontal regions, are key neural substrates for processing and regulating emotion and social
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behavior. Altered structure and function within this neural circuit have been associated with
diverse psychopathologies, including externalizing [1–4] and internalizing [5,6] disorders. Re-
cent neurodevelopmental research has highlighted adolescence as a critical period for matura-
tion of prefrontal structure and limbic/prefrontal connectivity [7,8]. Further, rates of
psychiatric disorders increase in adolescence [9,10]. Thus, a major goal for affective and cogni-
tive neuroscience is to link prefrontal and limbic structure and function with symptoms of psy-
chopathology across development.

Longitudinal studies offer unique opportunities to examine markers and underlying mecha-
nisms of vulnerability to psychopathology. However, few neuroimaging studies have utilized
cohorts followed from early childhood, and most of these have emphasized internalizing be-
haviors [11–16]. The single such study of childhood externalizing behavior showed a relation-
ship between aggression across ages 7.5–11 and smaller adult male amygdala volume [16].
These findings complement cross-sectional studies of clinical antisocial behavior, which have
most consistently implicated the amygdala and PFC [2,3,17,18], structures that are central in
research on externalizing disorders. In particular, amygdala volume abnormalities have been
suggested to underlie lower sensitivity to punishment and threat cues and reduced learning of
socially reinforcing stimuli, and prefrontal differences to abnormalities in emotion regulation
and prediction of consequences [19]. However, investigations have also implicated other struc-
tures in externalizing behavior, including the hippocampus [4,20,21], variations in which may
contribute to reduced emotion-related learning [22]. Unexamined thus far is whether very
early externalizing behaviors predict structural brain differences in adolescence, and whether
these might be more significant predictors of later neural structure due to early brain plasticity
and the documented role of early experience in shaping the brain [23]. It is also unknown
whether these early behaviors explain later neural structure beyond contributions of early life
internalizing behaviors, early life stress [24–26], later mental health symptoms, and substance
use [27–30]. Moreover, despite well-established gender differences in externalizing behaviors
[31,32], longitudinal neural correlates of female externalizing behaviors remain unexplored.

The present study examined the relationship of early-life externalizing behavior with adoles-
cent amygdala, hippocampus, and PFC volumes in a community sample of 76 adolescents fol-
lowed longitudinally since birth. We employed rigorous manual segmentation of the amygdala
and hippocampus and whole-brain tensor-based morphometry, an analytic strategy that has
yielded significant information on brain development [33,34]. Our primary hypothesis was
that preschool externalizing behavior would be associated with smaller amygdala and PFC vol-
umes at adolescence. The hippocampus was examined in an exploratory fashion, given previ-
ous mixed findings [4,21]. Next, we examined whether school-age externalizing behavior
added to the explanatory power of early-life externalizing, with the expectation that early exter-
nalizing behavior would be more strongly associated with adolescent amygdala, hippocampus,
and PFC volumes than later externalizing behavior. Finally, we considered other relevant vari-
ables including gender, maternal stress, preschool anxiety symptoms, school-age internalizing
symptoms (i.e., anxiety and depression), school-age ADHD symptoms, and adolescent sub-
stance use. Overall, our aim was to add to the literature on neural correlates of early life exter-
nalizing behavior in males and females, and we achieved this aim.

Materials and Methods

Participants
A sample of 83 adolescents (45 female; mean age = 14.7 years) was recruited from the longitu-
dinal Wisconsin Study of Families and Work [35]. While other aspects of this longitudinal
study have been published, data contained here have not been published elsewhere. Original
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inclusion criteria were that mothers be over age 18, in the second trimester of pregnancy, living
with the baby’s father, and employed or a full-time homemaker. Age 15 inclusion criteria were
family’s ability to travel to the laboratory and standard MRI eligibility. The University of Wis-
consin–Madison Institutional Review Board approved this research; participants’ parents gave
written informed consent, and participants gave written informed assent. Research was con-
ducted in accordance with principles expressed in the Declaration of Helsinki.

Post-scan exclusions yielded 76 subjects (42 female, mean age 14.7 years). Subjects were ex-
cluded for neural anomaly (1); history of infant febrile seizures (1); missing data, i.e., pubertal
status (1), preschool externalizing (2), or more than 2 of the school-age assessments (1). One
final data point was excluded due to a highly discrepant manually-traced amygdala volume
thought to possibly relate to poor scan quality i.e., preliminary analyses, prior to the current
manuscript, indicated this data point had studentized residual values> 4, which indicated a
very significant outlier, and a Cook’s D value of nearly 0.5 (cutoff*0.05), indicating this point
would significantly influence any further analyses (1).

Preschool Externalizing Symptoms
Preschool externalizing symptoms were assessed with the Preschool Behavior Questionnaire
(PBQ) [37] using an 11-item scale that covers a broad range of externalizing behaviors (e.g., Is
disobedient; Tells lies; Fights with other children). Mothers, fathers, and another familiar adult
rated child externalizing behaviors at age 4.5 years on a 3-point scale (Does not apply, Applies
sometimes, or Frequently applies); scores were averaged across reporters.

School-Age Externalizing Symptoms
School-age externalizing symptoms were assessed with multi-informant scores at child ages 7,
9, 11, 13, and 15 years. Adult- and child-report measures were developed in tandem to parallel
one another. Mothers and teachers completed the MacArthur Health and Behavior Question-
naire (HBQ) [38,39]. Child report was obtained at age 7 via the Berkeley Puppet Interview [40]
and subsequently with self-report HBQ [41]. Analyses employed the externalizing symptom
scale from each measure, which covers oppositionality/defiance (6–9 items; e.g., Defiant, talks
back to adults), conduct problems (9–15 items; e.g., Lies or cheats; Vandalizes), overt aggres-
sion (4–8 items; e.g., Gets in many fights), and relational aggression (6–7 items; e.g., Tries to
get others to dislike a peer). At each age, principal components analysis (PCA) was used to cre-
ate multi-informant scores [42]; to obtain an overall level of school-age symptoms as an assess-
ment of trait-like externalizing behavior, PCA-derived scores were averaged across the 5
assessments and z-scored.

Control Variables
Preschool maternal stress.Maternal stress scores consisted of a five-domain, PCA-derived,
maternal-report composite at child age 4.5, which encompassed maternal depressive symp-
toms, parenting stress, and role overload; family expressed anger; and financial stress [43].

Preschool anxiety symptoms. Preschool anxiety was assessed with a 9-item PBQ scale (e.g.,
Is worried, worries about many things). As with PBQ externalizing, responses were averaged
across mother, father, and other-familiar-adult ratings at child age 4.5.

School-age mental health symptoms.HBQ generalized anxiety (7–13 items; e.g., Nervous,
high strung, or tense), depression (6–16 items; e.g., Unhappy, sad, or depressed), and inatten-
tion/impulsivity (10–18 items; e.g., Cannot concentrate, cannot pay attention for long; Impul-
sive or acts without thinking) were multi-informant scores, averaged over 5 time-points as for
HBQ externalizing behavior.
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Adolescent pubertal status. At child age 15, a comprehensive puberty score was created
using adolescent report of Tanner stages [44,45] and mother report of the Petersen Pubertal
Development Scale [46] (5-point scale; scores range from 1 = no development to 5 = develop-
ment seems complete) [47,48].

Adolescent substance use. At age 15, participant-reported substance use over the past 30
days was assessed. For alcohol and tobacco separately, total use was estimated, i.e., number of
days used multiplied by typical number of drinks or cigarettes per day [49]; summary variables
were z-scored.

MRI Parameters
High-resolution whole-brain anatomical images were collected using a GE 750 3T scanner (GE
Medical Systems, Waukesha, WI, USA) (T1-weighted inversion recovery fast gradient echo,
124 axial slices, flip angle = 30°, Matrix = 256 x 192, FOV = 240, .9375x.9375x1.2 mm) and re-
constructed using in-house software. Image inhomogeneities were smoothed with a multispec-
tral segmentation/bias correction algorithm (FAST) [50], and images underwent skull and
vessel correction, and contrast-adjustment. As in previous publications, images were reoriented
to the “pathological plane” for more accurate comparison to atlases [51,52]. Specifically, images
were first aligned to anterior commissure-posterior commissure (i.e., AC-PC) space and then
rotated about the transverse axis such that in the mid-sagittal plane, the posterior junction of
the tentorium of the cerebellum was aligned to the same horizontal plane as the inferior margin
of the frontal lobe (i.e., as if the cerebrum were sitting on a microtome for sectioning).

Amygdala and Hippocampus Region of Interest (ROI) Definition
Given high variability and low validity of automated segmentation methods for regions like the
amygdala [53,54], we employed rigorous manual segmentation of the amygdala and hippocam-
pus. ROIs were manually traced by highly trained staff, who were blind to participant informa-
tion, using in-house software.

Amygdala Region of Interest (ROI) Definition. Definition was completed according to
previously established protocol [51]. Briefly, the optic tract, optic radiations, hippocampus,
and inferior horn of the lateral ventricle were used to define the posterior border; temporal
lobe white matter, cerebrospinal fluid (CSF), the anterior commissure, and entorhinal cortex
were used to define the anterior boundaries. Following initial tracing in the axial plane, traces
were refined in coronal and sagittal planes by comparison with ex-vivo atlas sections [55,56].
In particular, the sagittal view was used to confirm accurate separation of the amygdala from
hippocampus, entorhinal cortex, optic radiations, and caudate/putamen, while the coronal
view was used for refinement of the dorsolateral and inferomedial boundaries [51].

Interrater and spatial reliability were assessed according to established protocol [51]. Specif-
ically, volumetric reliability was assessed via tracing of 6 randomly selected images (12 amygda-
lae) and examination of interrater intraclass correlation (ICC), which equaled 0.91. Spatial
reliability assessment was conducted to ensure that high interrater reliability was not an artifact
of numerically similar but spatially divergent amygdala masks; this statistic (intersection/
union) averaged 0.84 over the 6 images.

Hippocampus Region of Interest (ROI) Definition. The most anterior aspect of the hip-
pocampal head (HH) was defined as the coronal slice where the temporal horn of the lateral
ventricle (TLV) appeared and the alveus was present (Fig. 1). Sagittal view was used for more
accurate identification of the alveus (Fig. 1 A-B). The superior border to the HH was identified
either by the ventricle arching above it or the white matter of the alveus, separating HH from
amygdala. Where decreased image resolution or contrast prevented using these landmarks, the
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HH was defined superiorly by an arbitrary horizontal line from the superior margin of the
TLV to the ambient cistern, in coronal view. The inferior border of the HH was defined as the
white matter separating HH from parahippocampal gyrus. Laterally, the HH was defined by
the TLV. In more anterior aspects of the HH, the medial border of the HH was defined by an
arbitrary vertical line extending from the most medial aspect of the parahippocampal gyrus
white matter to the ambient cistern. This line was used to separate the HH from the uncus,
which consists mostly of entorhinal cortex and amygdala in this area. Beginning in the most
anterior coronal slice where the uncal sulcus separates the hippocampus portion of the uncus
from entorhinal cortex, the uncus was included in the HH; here the ambient cistern defined
the HH medially.

The hippocampal body (HB) was defined anteriorly as the coronal slice in which the uncus
was no longer present (Fig. 1 C-D). Where the uncus was difficult to distinguish from the hip-
pocampus, three hierarchical criteria were used to identify the first slice of the HB: clearance of
tissue from the ambient cistern and most medial section of the TLV, a more circular shape and
lateral position of the hippocampus, and thinning of the inferomedial gray matter. Sagittal and
axial views confirmed the HH/HT border. For all aspects, the HB followed the same general
criteria as the HH, i.e., lateral, superior and medial borders were defined by the CSF of the TLV
and ambient cistern; inferior border was defined by white matter. Careful attention was given
to the superior HB border to avoid inclusion of the tail of the caudate, lateral geniculate and
stria terminalis.

The anterior aspect of the hippocampal tail (HT) was defined generally following Maly-
khin’s guidelines [57]. In an effort to include as much tissue as possible in the HT, its anterior
border was defined as the slice displaying at least 75% of the full profile of the crus of the fornix
(Fig. 1 E-F). Similar to the HH and HB, the HT was defined as bordered laterally by the lateral
ventricle, medially by either CSF or white matter, inferiorly by white matter, and superiorly by
either lateral ventricle or white matter. Care was taken to avoid including the pulvinar of the
thalamus and tail of caudate on the superior border. White matter of the fornix was excluded.
Fasciolar gyrus and Andreas Retzius gyrus were included [58]. The posterior aspect of the HT
was identified as the coronal slice where grey matter starts to appear inferiomedially to the lat-
eral ventricle [59] (Fig. 1 G-H).

As for the amygdala, interrater and spatial reliability were assessed following established
procedures [51,60,61]. Specifically, raters traced 5 randomly selected images (10 hippocampi);
ICC was 0.97, and spatial reliability averaged 0.81.

Tensor-Based Morphometry (TBM)
Whole-brain TBM was employed to examine prefrontal associations, using Advanced Normal-
ization Tools (ANTS) [62], one of the best available nonlinear warping algorithms [63], and
FMRISTAT [64]. TBM is well-suited for a pediatric population, as it minimizes sources of vari-
ability such as brain tissue segmentation, uses a study-specific anatomical template, and yields
high sensitivity at the voxel level.

Imaging processing and template creation. T1-weighted images were corrected for field
inhomogeneity, masked to include brain tissue and ventricular CSF, and used to construct an
optimal, study-specific template, via a diffeomorphic shape and intensity averaging technique
[62,65]. The region-based cross-correlation similarity metric was employed. Processing yielded
an unbiased average shape and appearance template and the set of diffeomorphisms and in-
verse diffeomorphisms that map from the template to each individual.

Symmetric diffeomorphic image normalization and tensor-based morphometry. After
affine transformation, each individual brain was registered to the template using symmetric
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Fig 1. Hippocampus tracing landmarks as viewed on coronal native space images. Panels A-H, viewed from top to bottom and left to right in each row,
show anterior to posterior progression through the hippocampus. Insets show areas of focus on full-brain sections (black box). An example region of interest
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normalization available in the Advanced Normalization Tools (ANTS) package [62]. Symmet-
ric normalization allows for large, yet physically reasonable, deformations and produces defor-
mation tensor fields, defined in the template space, which chart voxelwise shape change from
the template to each subject’s brain.

Jacobian determinants of the deformation field indicate fractional volume expansion and
contraction at each voxel, quantifying magnitude of volume alterations required to match the
template. Jacobian determinants were log transformed to increase proximity to the normal dis-
tribution [62] and smoothed using a Gaussian filter, yielding statistical maps with 8 mm at full-
width, half-maximum spatial smoothness.

Data Analysis
Manually-segmented amygdala and hippocampus analyses. Kolmogorov-Smirnov tests con-
firmed normality for all variables. Amygdala and hippocampus ROI analyses employ residual
volumes after regressing out cerebrum volume (i.e., total brain volume excluding brainstem
and cerebellum) and pubertal status. Prior to analyses central to our hypotheses, we examined
validity of evaluating the amygdala and hippocampus separately by brain hemisphere, and the
hippocampus by subregion. A repeated measures general linear model (GLM) with hemisphere
as a within-subjects factor and pubertal status and total brain volume as covariates showed no
effect of hemisphere for either structure; therefore, findings are presented for the mean of left
and right ROI volumes. Similarly, a repeated measures GLM with hippocampus subregion (i.e.,
head, body, and tail) as a within-subjects factor and gender and preschool externalizing as be-
tween-subjects factors showed no significant interaction of gender, externalizing, and subre-
gion. Thus, total hippocampus volumes were employed.

Subsequently, linear regression analyses examined the relationships of preschool externaliz-
ing behavior with adolescent ROI volumes using centered variables. For each regression, gen-
der and preschool externalizing, as well as the interaction of gender and preschool
externalizing behavior, were entered as predictors of adolescent ROI volumes. A second hierar-
chical regression examined the additional contribution of school-age externalizing behavior by
entering gender, preschool externalizing behavior, and the interaction of gender and preschool
externalizing behavior in the first step and school-age externalizing behavior in a second step.
Significant findings for preschool externalizing behavior were followed up with a hierarchical
regression with gender, preschool externalizing, and the interaction of gender and preschool
externalizing behavior predicting ROI volume in the first step, and potential confound vari-
ables (i.e., maternal stress at child age 4.5; preschool anxiety; school-age depression, anxiety,
and ADHD symptoms; and adolescent alcohol use and tobacco use) entered via stepwise inclu-
sion in a second hierarchical step. As these latter analyses revealed no significant contribution
from any potential confounders, confound variables are not considered further.

Significant regression analyses were also subjected to regression diagnostics to assess for
outliers of significant influence. First, the regression was run as above, saving studentized resid-
ual values and Cook’s Distance. Outliers were defined as data points with studentized residuals
> 2. Outliers of influence were defined as data points with studentized residuals> 2 and
Cook’s Distance> (4/N-k-1) cutoff; N = sample size; k = number of predictors) [36].

Tensor-based morphometry. Regression models were constructed examining behavioral
variables of interest and variations in brain structure across the whole brain in FMRISTAT

is traced in black and labeled by hippocampal subregion: hippocampal head (HH), body (HB), and tail (HT). AMG = amygdala; FX = fornix; EC = entorhinal
cortex; LV = lateral ventricle; PG = parahippocampal gyrus; PT = pulvinar of the thalamus; QC = quadrigeminal cistern; TLV = temporal horn of the lateral
ventricle; UN = uncus.

doi:10.1371/journal.pone.0117453.g001
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[64] for the full sample and for males and females separately. Whole-brain volume and puber-
tal status were entered into a linear regression model as nuisance variables. As in other work
[25], an initial statistical threshold of p< .005 uncorrected was used in examining possible
brain differences in relation to preschool externalizing behaviors. Signal above this threshold
was corrected using Gaussian random-field theory [66] to limit type I error.

Results

Descriptive Statistics
Participant pubertal status at age 15 was rated as nearly complete (mean = 4.47 on a 1–5 scale;
SD = 0.48), with female development more advanced (Mann-Whitney z = -3.425; p = .001).
Preschool externalizing scores had a mean of 5.18 (SD = 2.74) out of 22 possible points; gender
differences were not significant (Mann-Whitney z = -1.642; p = .101). School-age externalizing
z-scores had a mean of -0.0014 (SD = 0.872); gender differences were not significant (Mann-
Whitney z = -1.740; p = .082). The level and variance of externalizing scores observed are con-
sistent with other community samples in preschool [37,67] and elementary school [68,69],
with scores covering a range that includes low, subclinical, and clinical levels. Correlations of
ROI volumes with externalizing variables are presented in Table 1 and Fig. 2B. Descriptive sta-
tistics for raw whole brain volumes and amygdala and hippocampus ROI volumes are pre-
sented in Table 2.

Whole brain volumes (mm3) were segmented automatically; all other volumes are uncor-
rected hand-traced volumes (mm3). See Statistical Analysis section in Materials and Methods
for description of how raw amygdala and hippocampus volumes were corrected for total brain
volume and pubertal status.

Preschool Externalizing Behavior and Amygdala Volume
We examined the hypothesis that preschool externalizing would be associated with smaller ado-
lescent amygdala volume. A linear regression showed main effects for preschool externalizing be-
havior, such that higher preschool externalizing predicted smaller amygdala volumes (t = -3.161,

Table 1. Pearson correlations of neural volumes and externalizing behaviors.

Males 1 2 3

1. Mean Amygdala Volume

2. Mean Hippocampus Volume 0.327

3. Preschool Externalizing -0.653a -0.105

4. School-Age Externalizing -0.276 -0.018 0.291

Females 1 2 3

1. Mean Amygdala Volume

2. Mean Hippocampus Volume 0.268

3. Preschool Externalizing -0.088 0.294

4. School-Age Externalizing -0.173 0.008 0.684a

Amygdala and hippocampus volumes have been corrected for total brain volume and pubertal status.

Externalizing behaviors have been standardized (z-scores).
a p < 0.01

doi:10.1371/journal.pone.0117453.t001
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p = .002). The effect of gender was not significant (t = -1.444, p = .153). Results revealed a signifi-
cant gender by externalizing behavior interaction (t = 2.328, p = .023). Males, but not females,
with greater preschool externalizing had smaller adolescent amygdala volumes (see Fig. 2A, B).
Although regression diagnostics identified two outlying cases based on studentized residual val-
ues>2, and one case that also met influence criteria due to Cook’s D> (4/N-k-1) cutoff, the ex-
clusion of that case did not reduce any findings to non-significance, thus this case was retained.

To determine whether school-age externalizing behaviors contribute to prediction of neural
structure beyond what is explained by early-life externalizing behaviors, a second hierarchical
regression analysis was completed with preschool externalizing predicting amygdala or hippo-
campus volume in the first step and school-age externalizing behaviors entered using stepwise

Fig 2. Greater externalizing behavior in preschool correlates with smaller male amygdala volume. A) Representative coronal view of the amygdala
with key neuroanatomical landmarks denoted: AMG = amygdala; EC = entorhinal cortex; HH = hippocampal head; OT = optic tract; TLV = temporal horn of
the lateral ventricle; TLWM = temporal lobe white matter. B) Correlation of preschool externalizing with amygdala volumes (upper panel: male r = -0.653, p =
0.000029; female r = -0.088, p = 0.578).

doi:10.1371/journal.pone.0117453.g002

Table 2. Descriptive statistics for raw computed and hand-traced neural volumes.

Region Volume Mean and SD (mm3)

Males (N = 34) Females (N = 42) Full Sample (N = 76)

Whole Brain 1.20 E 6 (1.01 E-5) 1.05 E 6 (7.20 E-4) 1.12 E 6 (1.15 E-5)

Left Amygdala 1820.47 (122.51) 1718.69 (151.30) 1764.22 (147.35)

Right Amygdala 1832.18 (128.36) 1729.06 (132.79) 1775.19 (139.83)

Left Hippocampus 2861.00 (328.45) 2474.14 (342.48) 2647.21 (386.11)

Left Hippocampus Head 1487.94 (267.15) 1237.31 (246.75) 1349.43 (283.59)

Left Hippocampus Body 964.32 (174.86) 878.90 (149.18) 917.12 (165.67)

Left Hippocampus Tail 409.03 (102.95) 358.14 (107.62) 380.91 (107.90)

Right Hippocampus 2928.29 (294.31) 2530.79 (313.89) 2708.62 (362.71)

Right Hippocampus Head 1566.94 (228.18) 1325.60 (237.97) 1433.57 (261.64)

Right Hippocampus Body 939.88 (163.87) 840.26 (150.17) 884.83 (163.19)

Right Hippocampus Tail 421.59 (122.69) 365.21 (88.45) 390.43 (108.15)

doi:10.1371/journal.pone.0117453.t002
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inclusion in a second step. School-age externalizing did not contribute significant additional
variance. As noted in Materials and Methods, no control variable—including preschool anxiety
—explained significant variance.

Preschool Externalizing Behavior and Hippocampus Volume
Next, we examined the relationship of preschool externalizing with adolescent hippocampus
volumes. Results revealed a main effect of gender, such that females had significantly smaller
hippocampal volumes compared to males (t = -2.351, p = .021), but no main effect of external-
izing (t = 0.796, p = 0.428). The interaction of gender and externalizing was not significant (t =
1.699, p = .094). Regression diagnostics showed three outlying cases based on studentized resid-
ual value>2; however, none of these three cases was of significant influence based on Cook’s D
value, thus cases were retained.

Preschool Externalizing Behavior and Prefrontal Cortex
Voxelwise whole-brain regressions tested the hypothesis that early externalizing behavior
would be associated with reduced PFC volume. No significant association with any PFC region
was observed. The single significant association that emerged showed that greater preschool ex-
ternalizing symptoms predicted smaller volumes within a cluster including right angular gyrus
and temporoparietal junction (peak value: r = -4.18; p = 0.002; peak MNI coordinates: x = 55,
y = -52, z = 45) (Fig. 3A, B). There were no significant results for the interaction of gender and
externalizing behavior.

Discussion
The current investigation extends literature associating early-life behavior with adolescent and
adult brain structure, focusing uniquely on preschool externalizing behavior in a community
sample. Analyses employing manual segmentation of adolescent amygdala and hippocampus
showed an association of greater preschool externalizing behavior with smaller male amygdala
volumes, but no significant results for the hippocampus. Tensor-based morphometry analyses
showed no relationship of preschool externalizing behavior with adolescent PFC volume, but
revealed greater early externalizing behavior related to smaller volume of a region including
the angular gyrus and temporoparietal junction, across genders. Other potentially relevant var-
iables, including preschool maternal stress, preschool anxiety, school-age internalizing and ex-
ternalizing behavior, and adolescent substance use did not account for these findings.

The observed relationship of greater preschool externalizing with smaller adolescent male
amygdala volume is consistent with the single previous longitudinal investigation of childhood
externalizing behavior and adult brain volume in a clinical sample [16] and also with work in a
sample at high familial risk for externalizing behavior [70]. This result further supports cross-
sectional investigations with samples of conduct-disordered children and adolescents [71–73]
and adults with a history of clinical externalizing [74,75]. Thus, the current study adds to previ-
ous work by showing measurable differences in a region important for emotion processing and
social learning [76–78], even in a community sample with generally modest levels of early-life
externalizing behaviors, as early as age 4.5 years.

This very early life externalizing behavior predicted adolescent amygdala volume beyond
the impact of later behavior. While consistent with amygdala sensitivity to early experience
[23], the implications of this finding will require further investigation. Longitudinal neuroim-
aging studies are needed to determine when in the course of development the variations in
amygdala volume first emerge and whether such variations represent negative consequences
of, adaptive responses to, or risk factors for externalizing behaviors [4,79]. Future work should
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also examine the role of functional amygdala responses and behavioral differences influenced
by the amygdala, such as sensitivity to punishment and threat, in the relationship between
amygdala structure and externalizing behavior [80]. It is possible that early life behavior is par-
ticularly relevant to later brain structure in a community sample with primarily non-clinical
externalizing behavior; it is an open question whether this pattern might be seen in samples of
clinical externalizing disorders, or whether in those samples later trait behavior is equally or
more predictive.

Of note, the present amygdala findings also complement longitudinal research relating early
inhibited temperament—which has been linked to internalizing symptoms—to larger adult
amygdala volume [14], and in doing so highlight overlap in neural circuits associated with
childhood internalizing and externalizing disorders. Given the complex structure of the amyg-
dala [81] and its role in emotion and behavior, it may be fruitful to examine timing, directional-
ity, and degree of structural amygdala variation and the role this plays in comorbidity [82,83].
Gender may be particularly important to consider in this pursuit, given gender differences in

Fig 3. Greater preschool externalizing behavior relates to smaller right angular gyrus and temporoparietal junction, across genders. A) Coronal,
sagittal, and axial views; coordinates indicate cluster peak, within the angular gyrus. B) Correlation of individual subject cluster volume and preschool
externalizing behavior (full sample: r = -0.536, p = 0.000000705; male: r = -0.584, p = 0.000355; female r = -0.607, p = 0.0000199).

doi:10.1371/journal.pone.0117453.g003
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prevalence and course of internalizing and externalizing disorders [84,85] as well as in neural
development, structure, and function [32,86–88].

Contrary to our a priori hypothesis, we did not find an association between externalizing be-
havior and smaller volume within the PFC using tensor-based morphometry. We did however
uncover a relationship between greater early externalizing and smaller volumes near the right
angular gyrus and temporoparietal junction, across genders. This finding is consistent with
studies showing decreased temporal lobe [89–91] and parietal volumes [71] in clinical samples
and complements research related to clinical externalizing, including studies implicating the
angular gyrus in making moral judgments [92] and the temporoparietal junction in decoding
others’ emotional states [93] and acting altruistically [94]. In contrast, the present TBM results
were not consistent with research showing reduced PFC (i.e., ventromedial PFC, orbitofrontal
cortex) in clinical samples [2,3,95]. It is also noteworthy that TBM analyses did not uncover
amygdala volume differences detected with manual segmentation. We believe this discrepancy
is due to the greater precision of manual segmentation and possibly due to testing of the manu-
ally segmented amygdala as an a priori region of interest, thus not requiring correction for
multiple comparisons.

Although several studies have linked variability in hippocampal volume with externalizing
behavior [4,20,21], the present study did not. This null finding may suggest specificity for the
relationship of early externalizing behavior with amygdala, but not hippocampal, volume at ad-
olescence. Alternatively, effects may have reached significance with a larger sample or one with
higher levels of severe externalizing behavior.

Several limitations of the current investigation deserve note. Particularly, the early behaviors
studied here are not equivalent to or predictors of violent or clinically aggressive behaviors or
psychopathic personality, and care must be taken not to equate these two phenotypes. The
present study also cannot speak to causality—it remains an open question whether early-life
behaviors are a symptom of early neural abnormalities, or a risk factor for neural dysregulation
later in development. In addition, we cannot rule out that differences between our work and
previous studies relate to differences in methodological approach to segmentation.

In summary, the present study provides unique evidence for a relationship between early
childhood externalizing behavior and adolescent amygdala volume in males, as well as angular
gyrus and temporoparietal junction volume across genders. This work augments existing litera-
ture on externalizing behavior by examining the relationship between early life externalizing
and adolescent brain structure in a community sample. Strengths include longitudinal design,
rigorous manual segmentation of key subcortical structures, TBM with particular strengths for
pediatric populations, multi-informant measures of externalizing, and inclusion of both gen-
ders. Much future investigation will be required to clarify and expand our knowledge of exter-
nalizing syndromes and their neural correlates across genders.
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